a2 United States Patent
Call et al.

US009178908B2

(10) Patent No.: US 9,178,908 B2
(45) Date of Patent: *Nov. 3, 2015

(54) PROTECTING AGAINST THE
INTRODUCTION OF ALIEN CONTENT

(71) Applicant: Shape Security, Inc., Palo Alto, CA
(US)

(72) Inventors: Justin D. Call, Santa Clara, CA (US);
Xiaohan Huang, Cupertino, CA (US);
Xiaoming Zhou, Sunnyvale, CA (US);
Subramanian Varadarajan, San Jose,
CA (US); Marc R. Hansen, Mountain
View, CA (US)

(73) Assignee: Shape Security, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/055,583
(22) Filed: Oct. 16, 2013
(65) Prior Publication Data
US 2014/0283068 A1l Sep. 18, 2014
Related U.S. Application Data
(60) Provisional application No. 61/801,269, filed on Mar.

15, 2013.
(51) Imt.ClL
GO6F 21/00 (2013.01)
HO4L 29/06 (2006.01)
GOGF 21/12 (2013.01)
(Continued)
(52) US.CL
CPC HO4L 63/145 (2013.01); HO4L 63/0428

(2013.01); HO4L 63/0471 (2013.01); HO4L
63/123 (2013.01); HO4L 63/1425 (2013.01);
HO4L 63/1483 (2013.01);

(58) Field of Classification Search
USPC oot 726/22,23, 27
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,434,260 B2 10/2008 Hong et al.
7,480,385 B2 1/2009 Weber

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO02004109532 Al 12/2004
WO WO2008130946 A2 10/2008
WO WO02013091709 Al 6/2013

OTHER PUBLICATIONS

Design and implementation of a distributed virtual machine for
networked computers;Sirer et al; ACM SIGOPS Operating Systems,
1999, 15 pages.™

(Continued)

Primary Examiner — Jason Lee
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

In one implementation, a computer-implemented method can
identify abnormal computer behavior. The method can
receive, at a computer server subsystem and from a web
server system, computer code to be served in response to a
request from a computing client over the internet. The method
can also modify the computer code to obscure operational
design of the web server system that could be determined
from the computer code, and supplement the computer code
with instrumentation code that is programmed to execute on
the computing client. The method may serve the modified and
supplemented computer code to the computing client.

(Continued) 32 Claims, 8 Drawing Sheets
204
20 207 ™ web
Single Servers
Security | M] |]
Consale 204n
é?); 2025~ | Security Servers
208 . ioy |
Central % 52 : '
Sectirity n -
Decode, Analysis, and
Corsole Re-encode Madule
226~
ﬂ/[v-\ Instrumentation
r*(/ 210 ~202n
P
! N

-212n

US 9,178,908 B2
Page 2

(51) Imt.ClL
GOGF 21/14 (2013.01)
GOGF 21/51 (2013.01)
GOGF 21/54 (2013.01)
(52) US.CL
CPCcccee. GOGF 21/128 (2013.01); GO6F 21/14
(2013.01); GOG6F 21/51 (2013.01); GOGF 21/54
(2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,500,099 Bl 3/2009 McElwee et al.
7,665,139 Bl 2/2010 Szoret al.
7,707,223 B2 4/2010 Zubenko et al.
7,836,425 B2 11/2010 Rubin et al.
8,020,193 B2 9/2011 Bhola et al.
8,200,958 B2 6/2012 Coppola et al.
8,225,401 B2 7/2012 Sobel et al.
8,266,202 Bl 9/2012 Colton et al.
8,332,952 B2 12/2012 Zhang et al.
8,533,480 B2 9/2013 Pravetz et al.

2007/0011295 Al
2007/0064617 Al
2008/0222736 Al
2009/0070459 Al
2009/0178059 Al
2009/0193513 Al
2009/0199297 Al
2009/0241174 Al
2009/0249310 Al
2009/0282062 Al
2010/0235637 Al
2010/0235910 Al
2010/0257354 Al
2010/0262780 Al
2011/0023118 Al
2011/0107077 Al
2011/0131416 Al
2011/0154021 Al
2011/0178973 Al
2011/0296391 Al
2012/0022942 Al
2012/0030248 Al
2012/0031969 Al
2012/0096116 Al
2012/0124372 Al
2012/0198528 Al
2013/0198607 Al

1/2007 Hansen

3/2007 REVES .ovovveriviieiieiins 370/252

9/2008 Boodaei et al. .. 726/27

3/2009 Cho et al.

7/2009 Lang et al.

7/2009 Agarwal et al.

8/2009 Jarrett et al.

9/2009 Rajan et al.
10/2009 Meijer et al.
11/2009 Husic

9/2010 Luetal.

9/2010 Ku et al.
10/2010 Johnston et al.
10/2010 Mabhan et al.

1/2011 Wright

5/2011 Henderson et al.

6/2011 Schneider

6/2011 McCann et al.

7/2011 Lopez et al.
12/2011 Gass et al.

1/2012 Holloway et al.

2/2012 Blinnikka

2/2012 Hammad

4/2012 Mislove et al.

5/2012 Dilley et al.

8/2012 Baumhof

8/2013 Mischook et al.
2013/0263264 Al 10/2013 Klein et al.
2014/0089786 Al 3/2014 Hashmi

OTHER PUBLICATIONS

* %

Anderson et al., “Measuring the Cost of Cybercrime,” 2012 Work-
shop on the Economics of Information Security (WEIS), [retrieved
on Oct. 15, 2013]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20130623080604/http://weis2012.econinfosec.
org/papers/Anderson_ WEIS2012.pdf>, 31 pages, Jun. 2012.
CodeSealer, “CodeSealer,” codesealer.com [online] 2013 [captured
Aug. 29, 2013]. Retrieved from the Internet: <URL: http://web.
archive.org/web/2013082916503 /http://codesealer.com/technol-
ogy.html>, 2 pages.

Cova et al., “Detection and Analysis of Drive-by-Download Attacks
and Malicious JavaScript Code,” World Wide Web Conference Com-

mittee, Apr. 26-30, 2010. Retrieved from the Internet: <URL: http://
www.cs.ucsb.edu/~vigna/publications/2010__cova_ kruegel
vigna_Wepawet.pdf>, 10 pages.

Egele et al., “Defending Browsers against Drive-by Downloads:
Mitigating Heap-spraying Code Injection Attacks,” Detection of
Intrusions and Malware, and Vulnerability Assessment Lecture Notes
in Computer Science, 5587:88-106. Retrieved from the Internet:
<URL: http://anubis.seclab.tuwien.ac.at/papers/driveby.pdf>, 19
pages, 2009.

Entrust, “Defeating Man-in-the-Browser Malware,” Entrust.com
[online] Sep. 2012 [retrieved Oct. 15, 2013]. Retrieved from the
Internet: <URL: http://download.entrust.com/resources/download.
cfm/24002/>, 18 pages.

Marcus and Sherstobitoff, “Dissecting Operation High Roller,”
McAfee [online] 2012 [retrieved on Oct. 15, 2013]. Retrieved from
the Internet: <URL: http://www.mcafee.com/us/resources/reports/
rp-operation-high-roller.pdf>, 20 pages.

Oh, “Recent Java exploitation trends and malware,” Black Hat USA
2012, Retrieved from the Internet: <URL: https://media.blackhat.
com/bh-us-12/Briefings/Oh/BH_US__12_ Oh_ Recent_Java Ex-
ploitation_ Trends_ and_ Malware_ WP.pdf>, 27 pages.

RSA, “RSA Offers Advanced Solutions to Help Combat Man-In-
The-Browser Attacks,” rsa.com [online] May 18, 2010 [captured
Nov. 11, 2011]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20111111123108/http://rsa.com/press_release.
aspx?id=10943>, 3 pages.

Rutkowska, “Rootkits vs. Stealth by Design Malware,” Black Hat
Europe, 2006. Retrieved from the Internet: <URL: http://www.
blackhat.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.
pdf> 44 pages.

SafeNet, “Prevent Financial Fraud and Man-in-the-Browser
Attacks,” safenet-inc.com [online] [retrieved on Oct. 15, 2013].
Retrieved from the Internet: <URL: http://www.safenet-inc.com/so-
lutions/data-protection/financial-services/financial-fraud-man-in-
the-browser-attacks/>, 1 page.

Sood and Enbody, “A Browser Malware Taxonomy,” Virus Bulletin,
Jun. 2011. Retrieved from the Internet: <URL: http://www.secniche.
org/released/'VB_ BRW__MAL_TAX AKS_RIJE.pdf>, S pages.
Sood and Enbody, “Browser Exploit Packs—Exploitation Tactics,”
Virus Bulletin Conference, Oct. 2011, Retrieved from the Internet:
<URL: http://www.secniche.org/papers/VB_2011_BRW_EXP
PACKS__AKS_ RJE pdf>, 9 pages.

Sood et al., “The Art of Stealing Banking Information—Form grab-
bing on Fire,” Virus Bulletin, Nov. 2011, Retrieved from the Internet:
<URL: http://’www.virusbtn.com/virusbulletin/archive/2011/11/
vb201111-form-grabbing>, 5 pages.

Team Cymru, “Cybercrime—an Epidemic,” Queue, 4(9):24-35, Nov.
2006, Retrieved from the Internet: <URL: http://trygstad.rice.iit.
edu:8000/Articles/Cybercrime%20-%20An%20Epidemic%20-
%20ACM%20Queue.pdf>, 3 pages.

Trusteer, “Trusteer Rapport for Online Banking,” [online] 2013 [cap-
tured May 11, 2013]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20130511162210/http://www.trusteer.com/prod-
ucts/trusteer-rapport-for-online-banking>, 2 pages.

Vasco, “Hardened Browser,” vasco.com [online] [retrieved on Oct.
15, 2013]. Retrieved from the Internet: <URL: http://www.vasco.
com/products/client_ products/pki_digipass/hardened_ browser.
aspx>, 2 pages.

International Search Report and Written Opinion for PCT Applica-
tion No. PCT/US2014/023635, dated Jan. 21, 2015, 11 pages.

* cited by examiner

U.S. Patent Nov. 3, 2015 Sheet 1 of 8 US 9,178,908 B2

FIG. 1A

t
b
E
! < o
! < <t
I < T
f: < <
}
<t |
b wanl}
(o)
< 0
<

U.S. Patent Nov. 3, 2015 Sheet 2 of 8 US 9,178,908 B2

AN\ %
< 2
w
-
O B
g < - O
[I -
= SR
[av]
= m

~120

FIG. 1B

et > e

c @ o
T :
&2 = A\ P =

= | 2 E\3

112A~]
112B~]
114A~_|
118~/

US 9,178,908 B2

Sheet 3 of 8

Nov. 3, 2015

U.S. Patent

Z Old

uzZ0Z~|

uolneusWwNSsy|

972

8|NPOIN 8poIUS-aY
pue ‘sisAjeuy ‘@pooa(

\-yz2

sopny auibug
Aoljod

\-zzz \-022

sJoneg AJunosg

uy0c

sloAleg
GoM

~-ep0z

ugiz
e
egLz cie
a|osu0n
u Alinoag
[enuan
b \-802
= i
z0Z 3

102

8|0sSuU0D
AJlnoeg
albuls

U.S. Patent Nov. 3, 2015 Sheet 4 of 8 US 9,178,908 B2

310

Receive computer code from
304 web server

7 Determine security policy
306

Process

code?
308

Modify computer code l\
. 312

Add instrumentation code ‘\
i 314

Store modification information

N
316

' v
Transmit received computer Transmit modified and
code instrumented computer code |[™

318

FIG. 3A

U.S. Patent Nov. 3, 2015 Sheet 5 of 8

Receive indication of abnormal |

324 - client behavior

Report abnormal behavior to
web server

Report abnormal behavior to

a .
328 central security server

Receive response to modified [

330/" and instrumented code :

Apply inverse modifications to |
response

332

Forward response to web
server

334

FIG. 3B

US 9,178,908 B2

US 9,178,908 B2

Sheet 6 of 8

Nov. 3, 2015

U.S. Patent

SEVNETS 2oL
AJNoag jeuan—

vv "Old

1senbal 80Inosal
0} asuodsal
Ul 9p02 gOM 9AIBS

J

J\

viv-

0L
I9AISG O

0cy b
~

sl o}
Bp00 gam pajusun)syl
PUE PaLIpoW anIag

N

2poo gam 8Ly

uaLwnsul pue AIpop

N

2pod gom pajsanbal 9Ly
104 Aoyod Ayunoss ;
a|qeoldde sunuisdg

e

1sanbau plemio4 A/
2L

ZoL
wajsAsqng

FETNETS

N

e
AJIAOR [BULIOUQE 1081203 —u\

A

BP0D gaMm paUSINISUl
pue paljipow 8ynoexd

14

[444

90.1N0s8l
gom 1senbaoy

oty

piL
a9

US 9,178,908 B2

Sheet 7 of 8

Nov. 3, 2015

U.S. Patent

Aunnoe jeuniouqe GEF
10 $83UALINA00 BzARUY

80 ™ om0
Ayinoag |enuan

av 'Old

mmv/,

Je[e uo paseq

1senbal papooap 0}
asuodsal suiuielag AJ

9cy

FEYNETGETT
0L

Janios Aunoes
|esjua2 0] Ajanoe
|euliouge uoday

/

1sanbai pue
AjAloe |ewlouge
JO IOAJBS gom Uy

pey

/

\

1senbai 4 I H
anisuodsal epoda(

9cv
;-

8zh-/

wasAsqng
FETVETS

AV

}senboai 41 iH
ansuodsal ui

AuAnoe jewiouge
pajoslep Loday

A

Aynpoe ¥
jewlouge 10912Q

(474

B

!

TET o it

U.S. Patent Nov. 3, 2015 Sheet 8 of 8 US 9,178,908 B2

[Input/Output

\7
S —
0 [l
1
=il |4
| 1 ©
_ =
I LLLt s 111 5
14 |2 3
T H 8
< 111 2
1] Tl - . g‘ H
7] L [11] 9
- L T
14 F S | —
w
TTT7
ol | Y T
N 8 3
o S
S _)
w o o m)
2 5 o
4 o)
8 &
o o
o n

US 9,178,908 B2

1
PROTECTING AGAINST THE
INTRODUCTION OF ALIEN CONTENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(e)
(1),to U.S. Provisional Application Ser. No. 61/801,269, filed
on Mar. 15, 2013, the entire contents of which are incorpo-
rated herein by reference.

TECHNICAL FIELD

This document generally relates to computer security.

BACKGROUND

One common area of computer fraud involves attempts by
organizations to infiltrate and compromise computers of ordi-
nary people, and by that action, to elicit confidential informa-
tion or manipulate otherwise legitimate transactions. For
example, via an exploit commonly termed “Man in the
Browser,” a user’s computer can be compromised surrepti-
tiously with malware (i.e., malicious computer programs)
that intercepts legitimate communications by the user, such as
transactions with the user’s bank, and does so after the com-
munications have been authenticated and decrypted, e.g., by
a web browser on the computer. Such malware may alter the
interface that the user sees, such as by generating an interface
that looks to the user like his or her bank is requesting par-
ticular information (e.g., a PIN number) when in fact the bank
would never request such information via a web page. Alter-
natively, the malware may generate an interface that indicates
to a user that payment transaction was executed as the user
requested, when in fact, the malware altered the transaction so
as to divert the user’s money to the benefit of criminal enter-
prise.

Various approaches have been taken to identify and prevent
such malicious activity. For example, some approaches install
defensive software on client computers. Alternative
approaches run various kinds of analysis tools on the trans-
actions and/or network traffic on a server system to detect
improper activity.

SUMMARY

The exploitation of client-server applications (such as web
sites) by malicious programs (malware) on the client (such as
a browser) is made more difficult by modifying the legitimate
code transmitted to the client in varying manners each time
the code is served to the client. Such modifications can be
performed by an intermediary system that receives the code
as it would normally be served by a web server system, and
changes certain elements of that code in random ways (i.e.,
ways that prevent the malware on client computers from
predicting how the normally-served code operates so as to
maliciously interact with such code). For example, the names
of functions or variables may be changed in various random
manners each time a server system serves the legitimate code.
Such constantly changing modifications may interfere with
the ability of malicious parties to identify how the server
system operates and how the web pages are structured, so that
the malicious party cannot generate code to automatically
exploit that structure for unscrupulous or otherwise unautho-
rized objectives.

This document describes systems and techniques by which
web code (e.g., HTML, CSS, and JavaScript) is modified

10

15

20

25

30

35

40

45

50

55

60

65

2

before it is served over the internet by a server system so as to
make more difficult the exploitation of the server system by
clients that receive the code (including clients that are
infected without their users’ knowledge). The modifications
may differ for different times that a web page and related
content are served, whether to the same client computer or to
different client computers. Specifically, two different users
(or a single user in two different web browsing sessions) may
be served slightly different code in response to the same
requests, where the difference may be in implicit parts of the
code that are not displayed so that the differences are not
noticeable to the user or users. For example, the names that
are served to a client device for various software objects may
be changed in essentially random ways each time a page is
served. A main purpose of such action is to create a moving
target with the code, so that malicious code executing on the
client computers cannot use predictability of the code in order
to interact with the code in a malicious way, such as to trick a
user of the client computer into providing confidential finan-
cial information and the like.

As such, malicious activity can be both detected and
deflected in relatively sophisticated manners by changing the
environment in which executable code on the client device,
such as JavaScript, operates (in addition to changing corre-
sponding references in the HTML code). Detection can occur
by identifying certain JavaScript operations or calls that may
be made on a page, and instrumenting code that is served with
a web page so as to report to a security server system when
such operations occur and/or such calls are made (along with
information that describes the actions). Specifically, mali-
cious code may try to call an item that it believes to be part of
a static page, where that item is not part of the dynamically
altered code that was actually served, and such a false call can
be detected and reported. Deflection occurs by the constant
changing of code elements as they are served each time, such
as changing the names of elements that will be called by
malicious JavaScript, so that the malicious code can never
catch up with the changes, and thus gives itself away when it
tries to interoperate with code known by the system to be
stale.

As one example, a common method for making changes to
a document object model (DOM) for a web page is the docu-
ment.write method, and may be used by malicious code to
surreptitiously change what the user of a computing device
sees on a web page. A security system can (1) instrument
served code corresponding to such a method so that the instru-
mentation code reports calls to the method, and additional
includes data that characterizes such calls, so that the system
can detect abnormal activity and perhaps use the additional
data to determine whether the abnormal activity is malicious
or benign; and (2) change the function name to
“document.#3@]1*87%>5 .write,”
“1@2234$56%.4%$4$345%4.@12111@>, or some other
legal name that includes random text that can be changed
automatically each time the code is served. Such constant
changing creates a real challenge for a malicious party seek-
ing to write code that can keep up with the changes, and also
flags the presence of the malicious code when it attempts to
interact with an outdated method name, and is reported by the
instrumentation code. Other examples of JavaScript actions
that can be instrumeand continually changed include “getEle-
mentByld,” “getElementByName,” XPath commands, and
setting of HTML elements in the DOM to particular values.

The modification of code that is described in more detail
below may be carried out by a security system that may
supplement a web server system, and may intercept requests
from client computers to the web server system and intercept

US 9,178,908 B2

3

responses from web servers of the system when they serve
content back to the client computers (including where pieces
of the content are served by different server systems). The
modification may be of static code (e.g., HTML) and of
related executable code (e.g., JavaScript) in combination. For
example, the names of certain elements on a web page defined
via HTML may be changed, as may references to items exter-
nal to the HTML (e.g., CSS and JavaScript code). For
example, the name of a label may be changed from a name
provided by a programmer to an essentially random name like
$4@376&8*. Such renaming may occur by first identifying
programmatically related elements across the different types
of code that are to be served to the client computer (e.g.,
HTML, CSS, and JavaScript) and grouping such occurrences
of elements for further processing (e.g., by generating flags
that point to each such element or copying a portion of each
such element). Such processing may occur by modifying each
element throughout the different formats of code, such as
changing a name in the manner above each time that name
occurs in a parameter, method call, DOM operation, or else-
where. The modified elements may then be placed into the
code to be delivered to the client computer, by recoding the
code that was sent from the web server system, and serving
the recoded code. Such a process may be repeated each time
aclient computer requests code, and the modifications may be
different for each serving of the same code.

Such modification of the served code can help to prevent
bots or other malicious code operating on client computers
from exploiting perceived weaknesses in the web server sys-
tem. For example, the names of functions or variables may be
changed in various random manners each time a server sys-
tem serves the code. As noted above, such constantly chang-
ing modifications may interfere with the ability of malicious
parties to identify how the server system operates and web
pages are structured, so that the malicious party cannot gen-
erate code to automatically exploit that structure in dishonest
manners. In referring to random modification, this document
refers to changes between different sessions or page loads that
prevent someone at an end terminal or controlling an end
terminal to identify a pattern in the server-generated activity.
For example, a reversible function may change the names
when serving the code, and may interpret any HTTP requests
received back from a client by changing the names in an
opposite direction (so that the responses can be interpreted
properly by the web servers even though the responses are
submitted by the clients with labels that are different than
those that the web servers originally used in the code). Such
techniques may create a moving target that can prevent mali-
cious organizations from reverse-engineering the operation
of a web site so as to build automated bots that can interact
with the web site, and potentially carry out Man-in-the-
Browser and other Man-in-the-Middle operations and
attacks.

In addition to preventing malicious code from operating
properly, the systems discussed here can also identify mali-
cious operation. For example, in addition to or as an alterna-
tive to being randomly modified so as to prevent inter-opera-
tion at network endpoints by malicious code, the web server
code may be supplemented with instrumentation code that is
programmed to identify alien content in the rendered web
page on the client computer. That instrumentation code that
runs on the client may, for example, be programmed to iden-
tify a function call for a function name that does not match
function calls that are permissible for a particular served web
page (e.g., where the alien call may be one that matches a
name from the page originally provided by a web server but
does not match the revised name generated by the code alter-

10

15

20

25

30

35

40

45

50

55

60

65

4

ation techniques discussed in the prior paragraph). Such alien
content may simply be an indication that the user has installed
a legitimate plug-in to his or her browser, or it may also be an
indication that the user’s computer has become infected with
malicious code (e.g., JavaScript code). Additional techniques
may be used once alien content is identified so as to determine
whether the content is malicious or benign.

The techniques discussed here may be carried out by a
server subsystem that acts as an adjunct to a web server
system that is commonly employed by a provider of web
content. For example, as discussed in more detail below, an
internet retailer may have an existing system by which it
presents a web storefront at a web site (e.g., www.exam-
plestore.com), interacts with customers to show them infor-
mation about items available for purchase through the store-
front, and processes order and payment information through
that same storefront. The techniques discussed here may be
carried out by the retailer adding a separate server subsystem
(either physical or virtualized) that stands between the prior
system and the internet. The new subsystem may act to
receive web code from the web servers (or from a traffic
management system that receives the code from the web
servers), may translate that code in random manners before
serving it to clients, may receive responses from clients and
translate them in the opposite direction, and then provide that
information to the web servers using the original names and
other data. In addition, such a system may provide the retailer
or a third party with whom the retailer contracts (e.g., a web
security company that monitors data from many different
clients and helps them identify suspect or malicious activity)
with information that identifies suspicious transactions. For
example, the security subsystem may keep a log of abnormal
interactions, may refer particular interactions to a human
administrator for later analysis or for real-time intervention,
may cause a financial system to act as if a transaction occurred
(so as to fool code operating on a client computer) but to stop
such a transaction, or any number of other techniques that
may be used to deal with attempted fraudulent transactions.

Various implementations are described herein using hard-
ware, software, firmware, or a combination of such compo-
nents. In one implementation, a computer-implemented
method can identify abnormal computer behavior. The
method can receive, at a computer server subsystem and from
a web server system, computer code to be served in response
to a request from a computing client over the internet. The
method can also modify the computer code to obscure opera-
tional design of the web server system that could be deter-
mined from the computer code on the client, and supplement
the computer code with instrumentation code that is pro-
grammed to execute on the computing client. The method
may serve the modified and supplemented computer code to
the computing client.

These and other implementations described herein can
optionally include one or more of the following features. The
method can further include receiving, from the instrumenta-
tion code that executes on the computing client, a report that
the instrumentation code detected abnormal behavior at the
computing client. The report may include an indication that
the computing client attempted to interact with an unmodified
form of the computer code. The report may comprise a flag
that abnormal behavior has been detected. The report can
comprise an indication of at least one of a time of the detected
abnormal behavior, a session identifier, a web browser or
other application identifier, a network identifier, a resource or
website identifier, and one or more characteristics about the
detected abnormal behavior. The method can also include
based on a communication from the instrumentation code,

US 9,178,908 B2

5

providing from the computer server subsystem and to the web
server system an indication that abnormal behavior occurred
at the computing client, wherein the indication is usable by
the web server system to modify a manner in which a trans-
action with the computing client is performed. The method
can also include providing, to a central security monitoring
system, information that characterizes the abnormal behavior
that occurred at the computing client, the information usable
by the security monitoring system in aggregation from cor-
responding information from other computing clients, other
computing sessions, or both, to identify common abnormal
behavior indicative of coordinated malicious computing
behavior.

The method can optionally include receiving, from the
computing client, a request that responds to the modified and
supplemented computer code; modifying the request that
responds to the modified and supplemented computer code in
a manner that is a functional inverse of the modifying of the
computer code; and providing the modified request to the web
server system.

The method can further comprise based on a communica-
tion from the instrumentation code, providing from the com-
puter server subsystem and to the web server system an indi-
cation that abnormal behavior occurred at the computing
client, wherein the indication is usable by the web server
system to modify a manner in which a transaction with the
computing client is performed. The method may also option-
ally include modifying the computer code to obscure opera-
tion of the web server system comprises changing names of
functions in the computer code. Modifying the computer code
to obscure operation of the web server system can comprise
changing the values of attributes in the computer code.

Modifying the computer code to obscure operation of the
web server system can comprise changing values associated
with at least one of a link, a form, a field, and a function in an
HTML document. Modifying the computer code to obscure
operation of the web server system can comprise at least one
of'adding, removing, and rearranging content in a web docu-
ment. Modifying the computer code to obscure operation of
the web server system can include changing the environment
in which executable code on the client device operates.

The method may also include determining a security policy
that applies to the computer code that is to be served in
response to the request for the computing client, and modi-
fying the computer code to obscure operation of the web
server system can be based at least in part on the security
policy that applies to the computer code.

Serving the modified and supplemented computer code to
the computer client may include associating the modified and
supplemented computer code with a session identifier, and
wherein the received request from the computing client that
responds to the computer code includes the session identifier.

The method can further comprise: storing information
about the modifications to the computer code in a data struc-
ture that is identifiable by the session identifier, wherein
modifying the request in a manner that is a functional inverse
of the modifying of the computer code includes identifying
the data structure using the session identifier included in the
request from the computing client, and using the information
about the modifications to the computer code that is stored in
the data structure.

The server subsystem can modify the computer code dif-
ferently in response to each of a plurality of requests from the
computing client, wherein each of the plurality of requests
corresponds to a separate computing session.

20

25

30

35

40

45

55

6

The server subsystem can modify the computer code dif-
ferently in response to each of a plurality of requests for the
computer code from a plurality of computing clients.

In one implementation, a computer-implemented method
for identifying abnormal computer behavior, is disclosed.
The method can include: receiving, at a computer server
subsystem and from a web server system, computer code to
be served in response to a request for a computing client over
the internet; supplementing the computer code with instru-
mentation code that is programmed to execute on the com-
puting client; serving the supplemented computer code to the
computing client; and receiving, from the instrumentation
code that executes on the computing client, a report that the
instrumentation code detected abnormal behavior at the com-
puting client.

In these and other implementations, the method may
optionally include one or more of the following features. The
report can include a flag that abnormal behavior has been
detected. The report can include an indication of at least one
of a time of the detected abnormal behavior, a session iden-
tifier, a web browser or other application identifier, a network
identifier, a resource or website identifier, and one or more
characteristics about the detected abnormal behavior.

Based on the report from the instrumentation code, the
method can provide from the computer server subsystem and
to the web server system an indication that abnormal behavior
occurred at the first computing client, wherein the indication
is usable by the web server system to modify a manner in
which a transaction with the first computing client is per-
formed.

Inyet another implementation, a computer system for iden-
tifying abnormal computer behavior can include: a first client
computing device that is connected to a network; a web server
that is configured to provide a resource in the form of com-
puter code to the first client computing device in response to
a first request from the first client computing device; and a
security intermediary that is configured to (i) receive the
resource from the web server before the resource is provided
to the first client computing device, (ii) process the received
resource, and (iii) transmit the processed resource to the first
client computing device, wherein processing the received
resource includes (a) modifying the computer code for the
received resource to obscure operation of the web server
system, and (b) supplementing the computer code for the
received resource with instrumentation code that is pro-
grammed to execute on the first client computing device.

This implementation and others can optionally include one
or more of the following features. The security intermediary
can be configured to receive, from the instrumentation code
that executes on the first client computing device, a report that
the instrumentation code detected abnormal behavior at the
first client computing device. The report may include an
indication that the first client computing device attempted to
interact with an unmodified form of the computer code. Also,
modifying the computer code for the received resource may
include changing names of functions in the computer code.

The security intermediary can be further configured to
modify the computer code differently in response to each of a
plurality of requests from the first client computing device,
wherein each of the plurality of requests corresponds to a
separate computing session. The system can optionally
include a second client computing device that is connected to
the network, wherein the security intermediary is further con-
figured to modify the computer code differently in response to
a second request of the second client computing device than
in response to the first request of the first client computing
device, and wherein the security intermediary is further con-

US 9,178,908 B2

7

figured to transmit the resource that was processed in
response to the second request to the second client computing
device.

The security intermediary can be configured to process the
received resource such that the processed resource, when
executed by the first client computing device, causes the first
client computing device to present a substantially equivalent
computing experience to a user of the first client computing
device as the user experience for an unprocessed resource.

The security information can include information about
abnormal computer behavior that has occurred on one or
more of the plurality of security intermediaries. The central
security server can analyze the security information from the
plurality of security intermediaries in aggregate to provide
information about computer security threats. Moreover,
changing the environment in which executable code on the
client device operates can include changing functions or
methods for interacting with a document object model.

The instrumentation code that is programmed to execute on
the computing client can be configured to detect interaction of
code on the computing client that is separate from the modi-
fied code, with the document object model at the computing
client. The instrumentation code can also be configured to
collect information about a user’s interaction with the modi-
fied and supplemented computer code at the computing cli-
ent. Moreover, the modified and supplemented computer
code can be configured to provide a user of the computing
client with a substantially equivalent experience as the user
would be provided from unmodified computer code.

Other features and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts a schematic diagram of an example system
for serving web code and monitoring actions of client com-
puters.

FIG. 1B depicts a system-flow diagram of the example
system and example operations of the system for serving web
code and monitoring actions of client computers.

FIG. 2 is a schematic diagram of a system for performing
deflection and detection of malicious activity with respect to
a web server system.

FIG. 3A is a flow chart of a process for serving modified
and instrumented program code.

FIG. 3B is a flow chart of a process for monitoring opera-
tions of modified and instrumented program code and report-
ing abnormal behavior.

FIG. 4A-4B are swim-lane diagrams of a process for serv-
ing program code, modifying the code, and monitoring opera-
tion of the code on a client device.

FIG. 5 is a block diagram of a generic computer system for
implementing the processes and systems described herein.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1A is a schematic diagram of a system 100 for serving
web code and monitoring actions of client computers to iden-
tify abnormal behavior and potentially malicious activity.
Web code may include, for example, HTML, CSS, JavaS-
cript, and other program code associated with the content or
transmission of web resources such as a web page that may be
presented at a client computing device 114 (e.g., via a web
browser or a native application (non-browser)). The system
100 can detect and obstruct attempts by fraudsters and com-

10

15

20

25

30

35

40

45

50

55

60

65

8

puter hackers to learn the structure of a website (e.g., the
operational design of the pages for a site) and exploit security
vulnerabilities in the client device 114. For example, malware
118 may infect a client device 114 and gather sensitive infor-
mation about a user of the device, discreetly modify an online
transaction, or deceive a user into engaging in compromising
activity such as divulging confidential information. Man-in-
the-middle exploits are performed by one type of malware
118 that is difficult to detect on a client device 114, but can use
security vulnerabilities at the client device 114 to engage in
such malicious activity.

The system 100 can serve modified and instrumented web
code to the client device 114 to detect and obstruct malware
118 attempts to discern and exploit operations of a web server
104. In this example, the modified web code 114A is repre-
sented as a portion of a document on the client device 114,
while the instrumentation code 114B is represented as
another portion of document on the client device 114. Such
simplified representation is provided for sake of explanation,
though actual delivery and execution of the code may take a
variety of forms, including by a web browser on the client
device 114 rendering a page and potentially accessing addi-
tional code (e.g., CSS code and JavaScript or code from other
domains) based on code that is part of the web page, and the
browser may build a document object model (DOM) in a
familiar manner by such rendering and execution of the pro-
vided code. Also, the served code may be executed by a native
application.

The system 100 can include a security intermediary 102
that is logically located between the web server 104 and one
ormore client devices 114. The security intermediary 102 can
receive a portion or all of the traffic, including web code,
transmitted between client devices, such as client device 114,
and the web server 104 (and vice-versa). In compliance with
a governing security policy, when the web server 104 pro-
vides a resource such as a web page in response to a client
device 114 request, the web server 104 can forward the
response to the security intermediary 102 (perhaps through a
load balancer or other data management devices or applica-
tions) so that the web code for the response can be modified
and also supplemented with instrumentation code 114B
before it is served to the requesting client 114. Modification
of'the web code may be random in certain manners, and can
differ each time a response is served to a client so as to prevent
malware 118 from learning the structure or operation of the
web server, or from being developed by a malicious organi-
zation that learns the structure or operation. Additionally, the
web code can be supplemented with instrumentation code
that is executable on the client device 114. The instrumenta-
tion code 114B may detect when abnormal behavior occurs
on the client device 114, such as possible unauthorized activ-
ity by the malware 118, and can report the occurrence of such
activity to the security intermediary 102.

When security intermediary 102 receives requests (e.g.,
HTTP requests) from clients in response to modified web
code being processed on those clients, it can apply reverse
modifications to the requests before forwarding the requests
to the web server 104. Additionally, the security intermediary
102 can receive reports from the instrumentation code that
indicate abnormal behavior on the client device 114, and the
security intermediary 102 can log these events, alert the web
server 104 of possible malicious activity, and send reports
about such events to a central security server (not shown). The
central security server may, in some implementations, ana-
lyze reports in the aggregate from multiple security interme-
diaries 102, and/or reports from multiple client devices 114
and multiple computing sessions and page loads.

US 9,178,908 B2

9

FIG. 1B is a schematic diagram of the system 100 depicted
in FIG. 1A, shown performing a process for serving code and
monitoring actions of client computers to identify anomalous
and potentially malicious activity. The system 100 may
include a web server 104, security intermediary 102, security
server 108, and one or more client devices 112 and 114. Client
device 114 has been infected with malware 118 that may
attempt to exploit security vulnerabilities at the client device
114 and/or the web server 104, while client device 112 is
“clean” or uninfected in this example. For example, the mal-
ware 118 may have been written by an organized crime syn-
dicate to identify transactions with a particular bank whose
web site structure the syndicate has studied, and may attempt
to induce users to provide private information such as PIN
codes by recognizing when the bank’s web page is loaded by
a browser, and interfering with the normal user interface of
the bank’s web page, such as by generating a pop-up seeking
the user’s PIN number, in a manner that it looks to the user
like the bank generated the pop-up. In an actual implementa-
tion, the system 100 would communicate with thousands,
tens of thousands, hundreds of thousands, or millions of client
devices—some compromised and some clean—over a long
time period, though the number here is reduced for the sake of
simplification.

The web server 104 (which in normal implementation
would be implemented in a large number of physical or vir-
tual servers across one or more data centers, such as in one or
more racks of servers) may host electronic resources and
provide services over one or more networks such as the inter-
net 110. For example, the web server 104 may serve code for
pages of one or more websites by storing resources for each
website such as HTML pages, scripts, images, media, and
user data at the server 104, and providing the resources upon
request. For instance, the web server 104 may receive an
HTTP request from a client device 112 that requests the
server 104 to provide the client device 112 with a code for
generating a webpage. In response, the server 104 retrieves
one or more resources associated with the request and trans-
mits them to the requesting client device 112. The server 104
may respond to an HTTP request by serving an HTML file
that represents a webpage. The HTML file may reference
other resources such as advertisements, images, JavaScript
code, or Cascading Style Sheets (“CSS”) that the client
device 112 can use to load and present the webpage to a user.
The web server 104 may provide the referenced files to satisfy
the initial request, or may provide the files in response to
subsequent requests from the client device 112.

The web server 104 can be implemented with various com-
binations of software and hardware. In some implementa-
tions, the web server 104 can support services other than or in
addition to HTTP, including FTP, SSH, TelNet, and/or IMAP,
POP, and SMTP for e-mail services. The web server 104 may
also support secure connections such as through SSL. and
HTTPs protocols. Various open-source or commercial soft-
ware products may be used in implementing the web server
104, such as APACHE web server software or WINDOWS
server. Also, the web server 104 can be comprised of one or
more computing devices, such as a distributed server system
with multiple connected devices that each provide portions of
the operations (e.g., as a server bank, a group of blade servers,
or a multi-processor system).

The client computing devices 112 and 114 are capable of
communicating information with the web server 104 over a
network such as the internet 110. The client devices 112, 114
caninclude any of a variety of desktop or mobile devices such
as a desktop, notebook, smartphone, or tablet computers. The
client computing devices may include a network interface

10

15

20

25

30

35

40

45

50

55

60

65

10

card or other hardware for communicating over a wired or
wireless network that is connected to the internet 110. The
client devices 112, 114 may also include software, such as a
web browser or one or more native applications, to allow a
user of the client devices 112, 114 to request, load, and inter-
act with web resources such as HTML pages and JavaScript
applications from one or more websites served by the web
server 104.

Malware 118 may be present on one or more client devices
that communicate with the web server 104. In FIGS. 1A and
1B, malware 118 has infected the client device 114, but not
client device 112. Malware 118 can include any software that
exploits operations of a client or server computing system
such as the web server 104. Malware 118 may engage in
various malicious behaviors, including attempts to gather
private, digitally-stored information about users such as iden-
tification or financial information. Attackers can also use
malware 118 to access secure computer systems without
authorization, destroy digital information, or gain control of a
computer system from an authorized user. Malware 118 may
include viruses, Trojan horses, spyware, adware, and other
malicious software. Attackers have developed sophisticated
methods to deploy malware 118 on client computing devices
118 without a user’s knowledge. For example, using phishing
and other social engineering techniques, attackers may
deceive users into accessing a resource that installs malware
118 on the user’s computing system without notice or detec-
tion.

Some malware 118 can exploit security vulnerabilities in
the client device 114 (including in a browser or browsers
executing on the client device 114) to obtain sensitive user
account information and to initiate fraudulent transactions.
Attackers may use man-in-the-middle attacks, for instance, to
intercept communications between the client device 114 and
the web server 104. Even where a secure communication
protocol is used between the client device 114 and the web
server 104, some malware 118 can intercept communications
(e.g., after they have been decoded on the client device 114),
log information about the communications, and even alter
such communications. In man-in-the-browser attacks, the
malware 118 may compromise a web browser at client device
114 such that the malware 118 activates when a user visits a
particular website. The malware 118 may access information
about the website even after code for the site is decrypted, and
in some instances, the malware 118 may inject extra code
such as HTML or JavaScript to create malicious forms that
promptusers to divulge confidential information that can later
be transmitted to attackers for further use. Man-in-the-
browser malware 118 may also alter an HTTP request from
the client device 114 without the user’s knowledge to divert a
request to an unauthorized server or to implement a fraudu-
lent transaction. For example, in a banking transaction, mal-
ware 118 in the client computing device 114 may alter the
destination account number in a wire transfer to deliver funds
to a mule account rather than an account specified by the user.
Some malware 118 may passively reside in the client device
114 to monitor features of a site so that manual or automated
attacks on the site’s web server 104 can be made at a later
time.

Security intermediary 102 may include one or more com-
puting devices (e.g., physical or virtual server instances) that
are situated between the client computing devices 112, 114
and the web server 104. The security intermediary 102
receives and processes at least a portion of traffic transmitted
between the web server 104 and other computing devices that
interact with the web server 104, such as the client devices
112, 114. In some implementations, the security intermediary

US 9,178,908 B2

11

102 may be a physical or virtual subsystem of the web server
104. The security intermediary 102 may be configured to
modify and/or analyze web code transmitted to and from the
web server 104 to detect alien (i.e., abnormal) and/or mali-
cious transactions, and to obscure operations of the web
server 104 by various forms of malware.

The security intermediary 102 receives, or intercepts, traf-
fic transmitted from the web server 104 before the traffic is
received by a requesting computer device such as client
devices 112 or 114. For example, the security intermediary
102 may receive content from the web server 104 through a
direct connection with the web server 104 or through a local
area network (“LLAN”) before transmitting the content over
the internet 110 (though after modifying it). Conversely, the
security intermediary 102 may also receive incoming traffic
that is destined for the web server 104 so that it can process the
traffic before it is received by the web server 104. In some
implementations, the security intermediary 102 may be con-
figured as a reverse proxy server that appears to clients to host
and serve a website or other electronic resources as if it were
the web server 104.

In certain implementations, different subserver systems
can be used for outgoing service of code and incoming pro-
cessing of requests, with the subsystems communicating with
each other so that one system can provide reverse translations
to the translations originally provided by the first subsystem.
Such coordination may occur by maintaining a communica-
tion channel between the two subsystems and sharing infor-
mation for modifying and reverse modifying content. Such
coordination may also occur, whether a single security sub-
system is used or multiple subsystems are used, by storing a
cookie or similar identifier on client devices 112, 114. The
identifier that is stored in such a manner can be provided by a
client device that stores it, to the security intermediary 102 or
similar part of the system 100, and may be used there to
reverse transform content that is received back from the par-
ticular client device.

The security intermediary 102 may include one or more
computing devices that are separate from computing devices
of the web server 104. In such implementations, the security
intermediary 102 may communicate directly with the web
server through a networking cable such as an Ethernet cable
or fiber optic line (and typically through many such connec-
tions). The intermediary 102 can also communicate with the
web server 104 through other components in a network such
as a local area network (“LAN”). In some instances, the
intermediary 102 can be installed on the same premises as the
web server 104 so that operators or administrators of the web
server 104 can also maintain the intermediary 102 locally
(particularly for large-volume applications). Installing the
intermediary 102 in close proximity to the web server 104 can
have one or more additional benefits including reduced trans-
mission latency between the intermediary 102 and the web
server 104 and increased security that stems from a private
connection between the intermediary 102 and the web server
104 that is isolated from public networks such as the internet
110. This configuration can also avoid any need to encrypt
communication between the intermediary 102 and the web
server 104, which can be computationally expensive and
slow.

In some implementations, the security intermediary 102
may include one or more computing devices that are separate
from the computing devices of the web server 104, and that
are connected to the web server 104 through a public network
such as the internet 110. For example, a third-party security
company may maintain one or more security intermediaries
102 on the security company’s premises. The security com-

10

15

20

25

30

35

40

45

50

55

60

65

12

pany may offer services to protect websites and/or web serv-
ers 104 from exploitation according to the techniques
described herein. The security intermediary 102 could then
act as a reverse proxy for the web server 104, receiving
outbound traffic from the web server 104 over the internet
110, processing the traffic, and forwarding the processed
traffic to one or more requesting client devices 112, 114.
Likewise, the intermediary 102 may receive incoming traffic
from client devices 112, 114 over the internet 110, process the
incoming traffic, and forward the processed traffic to the web
server 104 over the internet 110. In this configuration, com-
munication between the security intermediary 102 and the
web server 104 may be encrypted and secured using protocols
such as HTTPS to authenticate the communication and pro-
tect against interception or unauthorized listeners over the
internet 110. (Similarly, communications with client devices
can also be secured in similar manners.) In some embodi-
ments, a private line or network may connect the web server
104 to the remote security intermediary 102, in which case the
system 100 may use unencrypted protocols to communicate
between the intermediary 102 and web server 104. Also, in
such a situation, fewer than all of the pages served may be
modified using the security intermediary 102, if such process-
ing introduces unwanted lag and delay.

In some implementations, security intermediary 102 may
be a virtual subsystem of web server 104. For example, the
one or more computing devices that implement web server
104 may also include software and/or firmware for the secu-
rity intermediary 102. The system 100 may include the secu-
rity intermediary 102 as software that interfaces with, and/or
is integrated with, software for the web server 104. For
example, when the web server 104 receives a request over the
internet 110, the software for the security intermediary 102
can first process the request and then submit the processed
request to the web server 104 through an API for the web
server 104 software. Similarly, when the web server 104
responds to a request, the response can be submitted to the
security intermediary 102 software through an API for pro-
cessing by security intermediary 102 before the response is
transmitted over the internet 110.

In some configurations of the system 100, two or more
security intermediaries 102 may serve the web server 104.
Redundant security intermediaries 102 can be used to reduce
the load on any individual intermediary 102 and to protect
against failures in one or more security intermediaries. The
system 100 can also balance traffic among two or more secu-
rity intermediaries 102. For example, the system 100 may
categorize traffic into shards that represent a logical portion of
traffic to or from a website. Shards may be categorized
according to client identity, network information, URL, the
domain or host name in an HTTP request, identity of
resources requested from the web server 104, location of
resources requested from the web server 104, and/or the con-
tent of a request or the requested resource 104.

The security intermediary 102 can process traffic transmit-
ted to and from the web server 104. Such processing of traffic
may include reversibly moditying web code to obscure ele-
ments of resources provided by the web server 104, and/or
inserting instrumentation code into web code provided by the
web server 104 to facilitate detection of alien or malicious
activity at the client computing devices 112, 114 (e.g., to
identify and report in such activity). The security intermedi-
ary 102 can also apply reverse modifications on requests or
other information transmitted by client devices 112, 114.
Reverse modifying of requests can effectively make the secu-
rity intermediary’s 102 operations transparent to the web
server 104. This document sometimes refers to reverse modi-

US 9,178,908 B2

13

fications as inverse modifications and these terms are
intended to have the same meanings unless indicated other-
wise.

The security intermediary 102 can make various modifica-
tions to outgoing web code (web code heading for a client). In
one example, the security intermediary 102 can make random
or pseudo-random changes (both of which are covered by the
term “random” in this document unless indicated otherwise)
in HTML attribute values in links or forms, which the client
devices 112, 114 may translate directly into HTTP protocol
elements in subsequent requests to the web server 104. For
instance, a web server 104 for an online retailer at www.ex-
amplestore.com can provide a text field in a checkout page for
auser at the client device 112, 114 to input his or her shipping
address. The original HTML web code from the web server
104 may include an HTML tag to create the field: <input
type="text” name=shippingaddress>.

To obstruct attempts by malware 118 that may have com-
promised the client device 114 to exploit the field and engage
in a fraudulent transaction, the security intermediary 102 can
replace one or more attributes for the field, such as by gener-
ating a pseudo-random value for the ‘name’ attribute to
replace ‘shippingaddress.” The security intermediary 102
may then forward the modified HTML for the webpage to the
client device 114 (either directly or some other server-side
intermediary).

The client device 114 may then generate HT TP requests for
the web server 104 that include the modified attribute, such as
in a POST request that references the pseudo-random ‘name’
attribute value. For example, such requests may be generated
in response to a user of the client device 114 interacting with
a rendered web page and other related content. When the
security intermediary 102 receives the client device 114
POST request, itapplies a reverse modification to the attribute
value, replacing the pseudo-random value with the original
‘shippingaddress’ value, and then forwards the request to web
server 104.

Data for making the reverse translation correspond to the
initial translation may be stored and obtained by the security
intermediary 102 in different manners. For example, the secu-
rity intermediary 102 may store or access translation tables to
apply the reverse modifications (stored local to that security
intermediary 102 or accessible to multiple such intermediar-
ies in a large system, so that different intermediaries may
handle requests as compared to what intermediary served the
web content), or use encrypted content in information asso-
ciated with the request to apply reverse modifications (e.g.,
which can be stored in a cookie or similar structure on the
client device 114). Further explanation and examples of secu-
rity intermediary 102 operations, including techniques for
detection and deflection of unauthorized activity, are dis-
cussed in further detail with respect to FIGS. 2-4.

The security intermediary 102 can apply different modifi-
cations to web code each time the code is served to one or
more client devices 112, 114—whether different for the dif-
ferent servings to a single device (e.g., as between different
web sessions with a site) or for different servings to different
devices. Modifications may vary across different users, dif-
ferent clients 112, 114, different sessions, and even different
page loads for the same user. For example, a user at client
device 112 may receive a particular page with one set of
modifications during a first session, and a different, second set
of modifications during a different session. Similarly, for two
different users at client devices 112 and 114, respectively, that
request the same resource from web server 104, the security
intermediary 102 may apply different modifications to each
resource, even if the users made their requests at substantially

25

30

40

45

14

the same time. By modifying content differently each time it
is served, the security intermediary 102 creates a moving
target that obstructs attempts by malware 118 to determine a
“normal” structure of the site or to identify patterns in the
structure of a site. Performing such random modifications
makes it more difficult for malware 118 to successfully ini-
tiate a fraudulent transaction with the web server 104 or
otherwise engage in unauthorized activity. Applying different
orunique modifications, whether page-to-page or session-to-
session, before the code is ultimately delivered to the client
devices 112,114 can frustrate attempts by malware 118 in any
of the client devices 112, 114 to study and/or exploit the
structure of a website or other web application.

The system 100 may also include a load balancer 106,
which can function as a reverse proxy and distribute incoming
traffic from client devices 112, 114 among one or more web
servers 104 and/or one or more security intermediaries 102.
The load balancer 106 can be connected to a network such as
the internet 110, one or more web servers 104, and one or
more security intermediaries 102. The load balancer 106 ana-
lyzes incoming traffic (e.g., traffic destined for the web server
104) and may categorize the traffic into shards. Traffic may be
distributed, for example, based on a Layer 4 transport or
network layer analysis, or based on a Layer 7 application
layer analysis. For example, FTP requests may be channeled
to a web server 104 configured to process FTP requests,
whereas HTTP requests may be channeled to a web server
104 configured to process HT'TP requests. Similarly, in Layer
7 analysis, the load balancer 106 may distribute incoming
traffic based on the content of an HT'TP header or content of
the application message itself. For instance, at an online bank-
ing website for www.examplebank.com, certain pages on the
site may be unrelated to a customer’s online banking experi-
ence, such as privacy and terms of use pages for the site. At
these pages, the customer does not interact with his bank
account, and the customer can only consume or request infor-
mation from the page, but he cannot post information to the
web server 104 from that page (at least not information that
would be a concern for a botnet). These pages may be deemed
a low security risk and the load balancer 106 can be config-
ured to identify low risk pages from HTTP requests in incom-
ing traffic. The load balancer 106 may forward low risk traffic
directly to the web server 104 and bypass the security inter-
mediary 102—or may pass information to the web server 104
so that the web server 104, when responding to the request,
can determine whether a request or response should be pro-
cessed by the security intermediary 102.

The load balancer 106 can also distribute traffic among
multiple security intermediaries 102. In one example, incom-
ing traffic can be distributed so that each security intermedi-
ary 102 maintains a substantially equal load as the other
intermediaries 102 or receives a substantially equal amount of
traffic as the other intermediaries 102. In some instances,
incoming traffic may be responsive to previously transmitted
web code that had been processed and modified by a particu-
lar security intermediary 102. The load balancer 106 may
distribute such incoming traffic to the particular security
intermediary 102 that generated the previously modified code
so that the particular security intermediary 102 can apply a
reverse modification to web code in the incoming traffic based
on a transformation table that may be stored locally on the
particular security intermediary 102. In some implementa-
tions, however, transformation tables may be shared or acces-
sible by one or more other security intermediaries 102, or
modifications may be stateless at the server system (e.g., at
the security intermediary 102), so that web code from incom-
ing traffic can be distributed to any intermediary 102.

US 9,178,908 B2

15

Once incoming traffic has been distributed to and pro-
cessed by a security intermediary 102, the load balancer 106
may receive the processed traffic from the security interme-
diary 102 and forward the traffic to the web server 104.

The load balancer 106 can also distribute outgoing traffic
from the web server 104 for processing by a security inter-
mediary 102 before the traffic is transmitted to the client
device 112, 114. Similar to the manner in which it analyzes
incoming traffic, the load balancer 106 may categorize out-
going traffic into shards based on information in the network,
transport, or application layers of the traffic. The load bal-
ancer 106 may determine that some traffic shards may bypass
the security intermediary 102 and may by transported over the
internet 110 for transmission to a client device 112, 114.
Other shards may be distributed to one or more security
intermediaries 102 for processing. In implementations of the
system 100 that include multiple security intermediaries 102,
the load balancer 106 may distribute outgoing traffic to main-
tain generally equivalent loads among the multiple interme-
diaries 102. The security intermediaries 102 can then transmit
processed traffic back to the load balancer 106 for delivery to
client devices 112, 114 over the internet 110.

A configuration module 120 can be used to monitor the
system 100 and to configure various aspects of the operation
of'the system 100. An administrator can use the configuration
module 120 (e.g., from a GUI presented on a computer ter-
minal operated by the administrator) to provide system
updates, change and load one or more system policies, man-
age users, select an operation mode, define how to handle
exceptions, and/or monitor the health and status of the system
100.

In one implementation, an administrator may use the con-
figuration module 120 to update system software to improve
the performance and security of the system 100. As the sys-
tem 100 is deployed for periods of time in the field, malware
118 designers may attempt to learn about the system 100 and
exploit any detected security vulnerabilities. To prevent this,
the system 100, including, for example, the security interme-
diary 102, can be updated with new software that patches
security vulnerabilities and improves system performance.
New features may also be introduced such as new algorithms
for modifying web code or implementing instrumentation
code.

The administrator can also use the configuration module
120 to select or change different system policies. For
example, particular modification modes may be selected. The
administrator can choose whether the security intermediaries
102 should apply modification techniques that involve only
modifying a web application’s implicit API (e.g., form fields,
links, AJAX calls), for example, or if instrumentation code or
other content should be supplemented with the web code.

The administrator can also configure how sessions are
managed. For example, the security intermediary 102 can be
configured to apply a unique session ID each time a client
device 112, 114 makes a new request for a web application, or
a particular session can be made to last across multiple
requests, such as when a user browses multiple pages while
logged into a secure account.

The configuration module 120 can also facilitate manage-
ment of resource families, which are categories of requests
and electronic content for which a particular security policy
applies. Thus, the system 100 may allow one or more resource
families to bypass operations of the security intermediary
102, while resources in other families must pass through the
security intermediary 102 for modification or analysis before
being delivered to a client device 112, 114. In some instances,
resource families can be defined by directories, uniform

10

15

20

25

30

35

40

45

55

60

65

16

resource indicators (URIs), uniform resource locators
(URLs), subdomains, or other logical locations of particular
resources on a site that is served by the web server 104. If a
web server 104 serves multiple sites or multiple domains,
different policies may apply among the different sites and/or
domains. An administrator can create, modify, and remove
resource policies at the configuration module 120, and can
indicate which security policy or policies to apply to various
families.

An administrator can also configure how the system 100
should apply various security policies based on factors other
than or in addition to resource families. For instance, different
policies may apply based on characteristics of the device that
is making the request or the network on which the requesting
device is on (e.g., requests from networks in certain geo-
graphic areas may be treated differently than other requests,
or requested from certain reputable providers may be scored
differently than those from less reputable providers). The
security intermediary 102 may determine identities of client
devices 112, 114 for which a security threat has previously
been identified, or it may recognize an account or IP address
of a user that has previously been associated with security
threats. The administrator may configure the system 100 to
apply more restrictive security policies to particular request-
ing client devices 112, 114 or users than would otherwise
apply based on the family of the requested resource alone.

At the direction of an administrator or other user with
appropriate system privileges, the configuration module 120
can change operating modes in the security intermediary 102
and/or adjust the security policy of one or more resource
families, clients, or networks. In other words, the administra-
tor may establish a number of security profiles that each set a
number of different parameters, and may switch between
those profiles, or the administrator may change particular
parameters. The security intermediary 102 may be capable of
various modification modes that the administrator can apply
to a resource family, for example. In some modes, very subtle
modifications may be made to elements of the web code in
order to detect anomalous or malicious activity, whereas
other modes may apply increasingly more complex or wide-
spread modifications that are aimed at preventing unautho-
rized activity. In particular implementations, policy settings
or mode changes can be triggered automatically by the con-
figuration module 120.

The configuration module 120 can also allow an adminis-
trator to specify how the security intermediary 102 should
respond to exceptions. Exceptions can relate to internal sys-
tem errors or to detection of fraud, malware, abnormal behav-
ior (e.g., from alien code that has not yet been determined to
be malicious or benign), and/or malicious activity in traffic
received from a client device 112, 114. Internal system errors
may be logged and transmitted to security server 108 (dis-
cussed in more detail below) for further analysis or storage.

For instances of detected fraud, malware, or alien or mali-
cious web code, the security intermediary 102 can be config-
ured to respond in one or more ways. For example, the inter-
mediary 102 may log the event (either by itself or having
another component of the system add to a log) and transmit it
to security server 108 for further analysis. In some implemen-
tations, the security intermediary 102 may alert the web
server 104 of suspected unauthorized activity, so that the web
server 104 can respond in a particular way. For example, in a
banking transaction involving suspected fraud, the system
100 can be configured to process the transaction normally, log
the transaction, and alert various parties or authorities. Alter-
natively, the transaction can be thwarted if the security inter-
mediary 102 is configured to alert the web server 104. The

US 9,178,908 B2

17

web server 104 can respond to a fraud alert by generating a
web resource for delivery to an infected or fraudulent client
device 114, where the response indicates that the transaction
was processed as requested, when in fact it was not. (In such
asituation, separate communications may occur to alert auser
that a potential attempt at fraud occurred, such as by sending
an email to a predetermined account of the user, or making a
telephone call to the user.)

The administrator may also manage users via the configu-
ration module. For example, various user categories may
provide system users with varying levels of use and access
privileges to the system 100. In one implementation, the
system 100 may provide four user categories: super-users,
system operators, analysts, and auditors. Super-users can cre-
ate other users and are able to access and perform any action
provided for by the system 100. The administrator may be a
super-user, for instance. System operators can configure the
system 100 and view data from the system 100, but cannot
manage other users. Analysts can view data from the system
100, but they cannot modify the system’s configuration.
Finally, an auditor can view a limited set of system data such
as how the system was used and by whom.

The configuration module 120 can also provide a portal for
managing various other system settings such as those that
may be required for installation and setup of the security
intermediary 102, or to configure a particular system setup,
such as registration with a security server 108, interoperabil-
ity with the load balancer 106, and arrangements of multiple
security intermediaries 102. The configuration module 120
can be accessible at a terminal on the premises of the security
intermediary 102 and can be separate from or integrated with
the security intermediary 102. In some implementations, the
configuration module 120 can be accessible remotely, such as
through an interface at a desktop or mobile computing device
that can communicate with the security intermediary 102
through a network.

The security server 108 can receive and analyze security
event information from the security intermediary 102 (and in
some implementations from many security intermediaries).
Security event information can include logs and alerts gener-
ated by the security intermediary 102 that indicate when the
intermediary 102 detects anomalous or malicious activity.
Feedback from instrumentation code that the security inter-
mediary 102 supplements with the web code for particular
web resources may indicate such anomalous or malicious
activity. Likewise, a request from an infected client device
114 that calls an unauthorized function that does not match
modifications for a given session may generate an alert by the
security intermediary 102.

Information about security events can be forwarded to the
security server 108. In one example, the security server 108
can be dedicated to events received from one or more security
intermediaries 102 that serve a particular web server 104. In
some implementations, the security server 108 can be a cen-
tralized server that receives security event information from a
plurality of security intermediaries 102 that serve multiple
web servers 104 and/or websites. Information on security
events 108 from multiple sites can be analyzed in aggregate to
study developing security threats, determine whether some
anomalous activity may nevertheless be benign (such as
traces from an authorized or legitimate browser plug-in), to
publish statistics or report information on security events to
interested parties, and/or to use in developing updates and
improvements to the system 100 for increased performance
and security. The security server 108 can analyze information
from across multiple computing sessions and/or multiple cli-
ents as well.

10

15

20

25

30

35

40

45

50

55

60

65

18

The security server 108 can also receive operating infor-
mation from the security intermediary 102 that can be used to
monitor system performance. For instance, the security inter-
mediary 102 may track and report information about the
speed and volume of modifications that it makes to web code,
or information about its usual and peak operating levels. The
information can be used to make or recommend system con-
figurations to optimize performance and to compare informa-
tion from multiple security intermediaries 102 deployed
across multiple web servers 104.

Communication between the security intermediary 102
and the client devices 112, 114 can occur over one or more
networks, including the internet 110. In some implementa-
tions, each client computing device 112 and 114 may connect
to a network such as a local area network (“LLAN) or a wide
area network (“WAN”) that is in turn connected to the secu-
rity intermediary 102 through the internet 110. In some
implementations, the system 100 may be installed on a private
network rather than, or in addition to, the internet 110. Com-
munications over the internet 110 can be encrypted and veri-
fied such as with HTTPS (a combination of HTTP and Secure
Sockets Layer (“SSL”) protocols).

Describing now one particular example of the operations of
the system 100 with reference to FIG. 1B, at step A, the web
server 104 responds to a request from client devices 112 and
114 for an electronic resource. The web server 104 accesses
or generates the resource, which in the example is a webpage
116 A relating to a financial transaction. For instance, the web
server 104 may serve an online banking site, www.example-
bank.com. The webpage 116A may provide forms for
account holders at the client devices 112 and 114 to institute
an electronic wire transfer. The forms may include fields that
allow the account holders to indicate a source account, a
destination account, and the amount to transfer. The webpage
116 A may implement the form with HTML tags such as
<form> and <input> tags that are each identified by a name.
For instance, the destination account field is named “money_
dest” The client devices 112 and 114 can use the names in
submitting form data to the web server 104 through a GET or
POST HTTP request method, for example.

Before the system 100 transmits the webpage 116 A (or
more precisely code that when rendered or otherwise
executed by a browser application generates the webpage
116 A) over the internet 110 and to each of the client devices
112 and 114, the webpage 116A is directed to the security
intermediary 102. The load balancer 106 may determine
which security intermediary 102 to direct the webpage 116A
to in implementations where there may be multiple, redun-
dant security intermediaries 102. A policy engine at the secu-
rity intermediary 102 may determine how the security inter-
mediary 102 will process the webpage 116A. For example,
the policy engine may determine that the webpage 116A,
which pertains to sensitive financial transactions, is part of a
resource family that the intermediary 102 has been config-
ured to modify and for which it is to insert instrumentation
code. Other resources from the banking site, such as its home-
page, may contain less sensitive information and may be
subject to lower-level security policies such that the security
intermediary 102 may handle the homepage with less sensi-
tivity than the wire transfer webpage 116A.

At steps B1 and B2, the security intermediary 102 pro-
cesses the webpage 116 A according to the governing security
policy and transmits processed webpage 116B to client
devices 112 and 114. First, the security intermediary 102 may
modify elements of the webpage’s 116 A implicit AP, such as
field names, function names, and link references. In the
example operations of the system 100, the security interme-

US 9,178,908 B2

19

diary 102 changes the name of the destination account field in
webpage 116 A from “money_dest” to “x1$v4.” The name
change obscures the identity of the field to prevent malware
118 from learning how to exploit the field. Moreover, the
security intermediary 102 can apply different pseudo-random
modifications each time the webpage 116A is served to pre-
vent the malware 118 from tracking patterns that the malware
118 could use to exploit the web server 104 or initiate a
fraudulent transaction, for example. Other techniques for
obscuring content, including obscuring the environment in
which web code such as JavaScript operates, are discussed
further herein.

Second, the security intermediary 102 can insert instru-
mentation code into the webpage that can detect certain activ-
ity that may indicate alien content (e.g., malware 118 or
legitimate code on a client device 112 or 114 that interacts
with a web page such as a browser plug-in), and can report the
detected activity back to the security intermediary 102 and/or
a central security server 108.

Instrumentation code may also collect information about
particular activity that occurs on the client device 112 and/or
114. For instance, the instrumentation code may collect infor-
mation about how a user interacts with the web page such as
key strokes, mouse movements, changes in focus between
particular forms, fields, or frames, and patterns and timing of
interactions with the page. Information about the user’s oper-
ating environment may also be collected, such as network
configurations, operating system information, hardware
specifications, performance indicators, session identifiers,
other cookies, browser type, browser settings, 1P address,
MAC address, client device type, plug-ins, screen resolution,
installed fonts, timestamp, site or page identifier, GPS data,
etc. In some implementations, users and system operators can
configure the instrumentation code to restrict or anonymize
the data that it gathers to respect user privacy.

The security intermediary 102 can also include an identi-
fier, such as a session identifier in a cookie, with the processed
web page 116B that it transmits. The security intermediary
102 can store the identifier in a data structure, table, or data-
base that correlates the original web code with the modified
web code for a particular resource so that the security inter-
mediary 102 can apply reverse modifications to requests
based on modified resources before forwarding the request to
the web server 104. For example, the security intermediary
102 may assign a unique identifier to the webpage 116 A, and
store the identifier in a table that associates the resource’s
original field name, “money_dest,” with the modified field
name “x1$v4.” Later transactions posted to the web server
104 from the modified page 116B can be received by the
security intermediary 102 for reverse modification before
forwarding the request to the web server 104. The security
intermediary 102 can determine which reverse modifications
to apply based on the identifier. In some implementations, the
identifier can be a session identifier.

At step C1, client device 112 has received the modified
(i.e., processed) web code of web page 116B. Client device
112 is a clean device in that no malware 118 that is configured
to attack the online banking website has infected client device
112. A user at the client device 112 provides into the fields on
the web page 116B the necessary information to complete a
wire transfer, such as an indication of the source account,
destination account, and transfer amount. The user may then
submit the request for a wire transfer, which a browser on the
client device 112 converts into an HTTP request to the web
server 104, the request including the information submitted
by the user along with corresponding field names. The HT'TP

20

25

30

40

45

50

55

20

request from client device 112 uses the random field name
that the security intermediary 102 generated for the destina-
tion account field, “x1$v4.”

Instrumentation code 112B can monitor the webpage 116B
on client device 112. In some implementations, the instru-
mentation code 112B may determine that malware 118 or
other anomalous activity has altered the webpage 116B and
may be attempting to initiate an unauthorized transaction. For
example, the instrumentation code 112B may include infor-
mation about the modified web code for web page 116B, and
may be programmed to detect when elements of the modified
code are altered at the client device 112. For instance, the
instrumentation code may determine whether the document
object model (“DOM?”) for the webpage has been altered, or
if the HTTP request based on the webpage uses unexpected
values that do not correspond to the modified web code deliv-
ered in web page 116B. For instance, the instrumentation
code may detect that the client device 114 has called an
original function value rather than its modified, replaced
value.

Malicious activity can be both detected and deflected in
relatively sophisticated manners by changing the environ-
ment in which executable code on the client device, such as
JavaScript, operates. Detection can occur by identifying cer-
tain JavaScript operations or calls that may be made on a
page, and instrumenting code that is served with a web page
s0 as to report to a security server system when such opera-
tions occur and/or such calls are made (along with informa-
tion that describes the actions). Deflection occurs by the
constant changing of code elements as they are served each
time, such as changing the names of elements that will be
called by malicious JavaScript, so that the malicious code can
never catch up with the changes and thus gives itself away
when it tries to interoperate with code known by the system to
be stale. As one example, a common method for making
changes to a DOM for a web page is the document.write
method, and may be used by malicious code to surreptitiously
change what the user of a computing device sees on a web
page.

A security system can (1) instrument served code corre-
sponding to such a method so that the instrumentation code
reports calls to the method, and additionally includes data that
characterizes such calls, so that the system can detect abnor-
mal activity and perhaps use the additional data to determine
whether the abnormal activity is malicious or benign; and (2)
change the function name to “document.#3@1%87%5.write”
or some other legal name that includes random text that can be
changed automatically each time the code is served. Such
constant changing creates a real challenge for a malicious
party seeking to write code that can keep up with the changes,
and also flags the presence of the malicious code when it
attempts to interact with an outdated method name, and is
reported by the instrumentation code. Other examples of
JavaScript actions that can be instrumented and continually
changed include “getElementByld,” “getElementByName,”
XPath commands, and setting of HTML elements in the
DOM to particular values.

As instrumented code executes on the client devices 112,
114, the code may collect information that characterizes
events and statuses of a web page or other resource as
described, and may report the information in various man-
ners. In some implementations, the instrumentation reports
that include such information can be sent to the security
server 108 and/or the security intermediary 102. The security
server 108 may receive instrumentation reports directly from
the client devices 112, 114, or indirectly through the security
intermediary 102. The instrumentation code may generate

US 9,178,908 B2

21

and transmit reports periodically or upon request, for
instance. Reports can also be transmitted in subsequent HTTP
requests from the client device 112, 114 to the web server 104,
and can be received by the security intermediary 102. Alter-
natively or in addition to these techniques, instrumentation
reports can be sent to the security intermediary 102 or security
server 108 asynchronously, such as through the use of AJAX
or WebSocket.

At step C1, malware 118 has not interfered with the trans-
action, and the HTTP request includes the appropriate modi-
fied field names such as “x1$v4” for the “money_dest” field.
Therefore, the instrumentation code 112B does not report the
presence of anomalous or malicious activity to the security
intermediary 102.

Atstep C2, client device 114 is shown to have received the
modified (i.e., processed) web code for web page 116B.
Unlike client device 112, however, client device 114 is com-
promised with malware 118, such as a man-in-the-browser
bot. When a user of the compromised client device 114 sub-
mits the wire-transfer transaction, the malware 118 may inter-
vene and replace the destination account field name with
“money_dest”—the original field name before the security
intermediary 102 modified web page 116 A. The bot may use
the original field name, for example, based on previous analy-
sis of the banking website in instances where the security
intermediary 102 did not modify the field name.

The instrumentation code 114B can detect the behavior or
consequences of the behavior of malware 118, and generate a
report to alert the security intermediary 102 and/or the web
server 104 of suspicious activity. The instrumentation code
114B in FIG. 1B, for example, reports the suspicious activity
by causing the HTTP request that the user submits for the
transaction to include the field name “x1$v4*” in place of the
malware’s 118 field name “money_dest.” The asterisk
appended to the end of the modified field name indicates that
the instrumentation code 114B detected suspicious activity.

At steps D1 and D2, the security intermediary 102 receives
the HTTP requests for the wire-transfer transaction from
client devices 112 and 114, decodes the requests, and for-
wards the decoded requests to the web server 104. The HTTP
requests from the client devices 112 and 114 may include a
cookie having a session identifier that the security intermedi-
ary 102 can use in decoding the HTTP requests. The security
intermediary 102 can lookup the session identifier in a trans-
lation table, and decode the request by applying reverse modi-
fications that restore the original field and function names, for
example. With respect to the request that the intermediary 102
receives from the clean client device 112, the intermediary
102 receives the substitute field name “x1$v4” as expected,
decodes the field name by replacing it with “money_dest” and
forwards the request to the web server 104 through the load
balancer 106. The operation of security intermediary 102 is
transparent to the web server 104, and the web server 104 can
process the transaction according to the user’s request.

With respect to the HTTP request from the compromised
client device 114, the security intermediary 102 recognizes
the report of suspicious activity by instrumentation code 114,
and sends an alert to the web server 104. The security inter-
mediary 102 can use the session identifier in the HTTP
request to determine the appropriate reverse modifications
necessary to decode the request. The security intermediary
102 may recognize that the field name “x1$v4*” corresponds
to the original “money_dest” field name, but that the instru-
mentation code 114B appended an asterisk to the field name
to indicate possibly malicious activity.

The security intermediary 102 can respond to the indica-
tion in various ways according to the applicable security

5

10

15

20

25

30

35

40

45

55

60

65

22

policy and/or system configuration settings. In one example
shown in step D2, the intermediary 102 forwards the decoded
request to the web server 104, but appends the asterisk to the
destination account field name, “money_dest*,” to notify the
web server 104 that the transaction is suspicious, and may
indicate the presence of unauthorized alien content. In
response, the web server 104 may ignore the alert, complete
the transaction and log the alert, refuse to complete the trans-
action, pretend to complete the transaction, and/or take other
appropriate action. In some implementations, the security
intermediary 102 may not forward the transaction request to
the web server 104 if suspicious activity has been detected.

At step E, the security intermediary 102 may forward infor-
mation about the transactions between the web server and the
client devices 112 and/or 114 to the security server 108. For
example, the security intermediary 102 may share informa-
tion about the transaction from client device 114 in which the
instrumentation code 114B reported suspicious activity.

The instrumentation code 114B may include a report about
the detected suspicious activity and its circumstances that the
security intermediary 102 can provide to the security server
108. For example, the report may include information about
the client device 114, the abnormal or suspicious activity, the
electronic resources and fields involved, and information
about the browser, operating system, or other application that
the malware 118 may have compromised. Data from the
security server 108 can be analyzed with respect to the secu-
rity intermediary 102 for a particular site, or in aggregate with
information from other security intermediaries 102 that serve
other websites and web servers 104. The security server 108
can analyze data across multiple computing sessions and for
multiple client devices. The analysis from the security server
108 can be used, for instance, to identify new threats, track
known threats, and to distinguish legitimate abnormal or alien
activity from malicious activity.

FIG. 2 is a schematic diagram of a system 100 for perform-
ing deflection and detection of malicious activity with respect
to a web server system. The system 100 may be the same as
the system 100 discussed with respect to FIGS. 1A and 1B,
and is shown in this example to better explain the interrela-
tionship of various general features of the overall system 200,
including the use of instrumentation code for detection and
deflection that is discussed in greater detail throughout this
document.

The system 200 in this example is a system that is operated
by or for alarge number of different businesses that serve web
pages and other content over the internet, such as banks and
retailers that have on-line presences (e.g., on-line stores, or
on-line account management tools). The main server systems
operated by those organizations or their agents are designated
as web servers 204a-204n, and could include a broad array of
web servers, content servers, database servers, financial serv-
ers, load balancers, and other necessary components (either
as physical or virtual servers).

A set of security server systems 202a to 202z are shown
connected between the web servers 2044 to 204 and a net-
work 210 such as the internet. Although both extend to n in
number, the actual number of sub-systems could vary. For
example, certain of the customers could install two separate
security server systems to serve all of their web server sys-
tems (which could be one or more), such as for redundancy
purposes. The particular security server systems 202a-202n
may be matched to particular ones of the web server systems
204a-204n, or they may be at separate sites, and all of the web
servers for various different customers may be provided with
services by a single common set of security servers 202a-

US 9,178,908 B2

23

2027 (e.g., when all of the server systems are at a single
co-location facility so that bandwidth issues are minimized).

Each of the security server systems 202q-2027 may be
arranged and programmed to carry out operations like those
discussed above and below and other operations. For
example, a policy engine 220 in each such security server
system may evaluate HTTP requests from client computers
(e.g., desktop, laptop, tablet, and smartphone computers)
based on header and network information, and can set and
store session information related to a relevant policy. The
policy engine may be programmed to classify requests and
correlate them to particular actions to be taken to code
returned by the web server systems before such code is served
back to a client computer. When such code returns, the policy
information may be provided to a decode, analysis, and re-
encode module, which matches the content to be delivered,
across multiple content types (e.g., HTML, JavaScript, and
CSS), to actions to be taken on the content (e.g., using XPATH
within a DOM), such as substitutions, addition of content, and
other actions that may be provided as extensions to the sys-
tem. For example, the different types of content may be ana-
lyzed to determine naming that may extend across such dif-
ferent pieces of content (e.g., the name of a function or
parameter), and such names may be changed in a way that
differs each time the content is served, e.g., by replacing a
named item with randomly-generated characters. Elements
within the different types of content may also first be grouped
as having a common effect on the operation of the code (e.g.,
if one element makes a call to another), and then may be
re-encoded together in a common manner so that their inter-
operation with each other will be consistent even after the
re-encoding.

A rules engine 222 may store analytical rules for perform-
ing such analysis and for re-encoding of the content. The rules
engine 222 may be populated with rules developed through
operator observation of particular content types, such as by
operators of a system studying typical web pages that call
JavaScript content and recognizing that a particular method is
frequently used in a particular manner. Such observation may
result in the rules engine 222 being programmed to identify
the method and calls to the method so that they can all be
grouped and re-encoded in a consistent and coordinated man-
ner.

The decode, analysis, and re-encode module 224 encodes
content being passed to client computers from a web server
according to relevant policies and rules. The module 224 also
reverse encodes requests from the client computers to the
relevant web server or servers. For example, a web page may
be served with a particular parameter, and may refer to Java-
Script that references that same parameter. The decode,
analysis, and re-encode module 224 may replace the name of
that parameter, in each of the different types of content, with
a randomly generated name, and each time the web page is
served (or at least in varying sessions), the generated name
may be different. When the name of the parameter is passed
back to the web server, it may be re-encoded back to its
original name so that this portion of the security process may
occur seamlessly for the web server.

A key for the function that encodes and decodes such
strings can be maintained by the security server system 202
along with an identifier for the particular client computer so
that the system 202 may know which key or function to apply,
and may otherwise maintain a state for the client computer
and its session. A stateless approach may also be employed,
whereby the system 202 encrypts the state and stores it in a
cookie that is saved at the relevant client computer. The client
computer may then pass that cookie data back when it passes

40

45

55

24

the information that needs to be decoded back to its original
status. With the cookie data, the system 202 may use a private
key to decrypt the state information and use that state infor-
mation in real-time to decode the information from the client
computer. Such a stateless implementation may create ben-
efits such as less management overhead for the server system
202 (e.g., for tracking state, for storing state, and for perform-
ing clean-up of stored state information as sessions time out
or otherwise end) and as a result, higher overall throughput.

The decode, analysis, and re-encode module 224 and the
security server system 202 may be configured to modify web
code differently each time it is served in a manner that is
generally imperceptible to a user who interacts with such web
code. For example, multiple different client computers may
request a common web resource such as a web page or web
application that a web server provides in response to the
multiple requests in substantially the same manner. Thus, a
common web page may be requested from a web server, and
the web server may respond by serving the same or substan-
tially identical HTML, CSS, JavaScript, images, and other
web code or files to each of the clients in satisfaction of the
requests. In some instances, particular portions of requested
web resources may be common among multiple requests,
while other portions may be client or session specific. The
decode, analysis, and re-encode module 224 may be adapted
to apply different modifications to each instance of a common
web resource, or common portion of a web resource, such that
the web code that it is ultimately delivered to the client com-
puters in response to each request for the common web
resource includes different modifications.

Even where different modifications are applied in respond-
ing to multiple requests for a common web resource, the
security server system 202 can apply the modifications in a
manner that does not substantially affect a way that the user
interacts with the resource, regardless of the different trans-
formations applied. For example, when two different client
computers request a common web page, the security server
system 202 applies different modifications to the web code
corresponding to the web page in response to each request for
the web page, but the modifications do not substantially affect
a presentation of the web page between the two different
client computers. The modifications can therefore be made
largely transparent to users interacting with a common web
resource so that the modifications do not cause a substantial
difference in the way the resource is displayed or the way the
user interacts with the resource on different client devices or
in different sessions in which the resource is requested.

An instrumentation module 226 is programmed to add
instrumentation code to the content that is served from a web
server. The instrumentation code is code that is programmed
to monitor the operation of other code that is served. For
example, the instrumentation code may be programmed to
identify when certain methods are called, when those meth-
ods have been identified as likely to be called by malicious
software. When such actions are observed to occur by the
instrumentation code, the instrumentation code may be pro-
grammed to send a communication to the security server
reporting on the type of action that occurred and other meta
data that is helpful in characterizing the activity. Such infor-
mation can be used to help determine whether the action was
malicious or benign.

The instrumentation code may also analyze the DOM on a
client computer in predetermined manners that are likely to
identify the presence of and operation of malicious software,
and to report to the security servers 202 or a related system.
For example, the instrumentation code may be programmed
to characterize a portion of the DOM when a user takes a

US 9,178,908 B2

25

particular action, such as clicking on a particular on-page
button, so as to identify a change in the DOM before and after
the click (where the click is expected to cause a particular
change to the DOM if there is benign code operating with
respect to the click, as opposed to malicious code operating
with respect to the click). Data that characterizes the DOM
may also be hashed, either at the client computer or the server
system 202, to produce a representation of the DOM (e.g., in
the differences between part of the DOM before and after a
defined action occurs) that is easy to compare against corre-
sponding representations of DOMs from other client comput-
ers. Other techniques may also be used by the instrumentation
code to generate a compact representation of the DOM or
other structure expected to be affected by malicious code in
an identifiable manner.

As noted, the content from web servers 204a-204n, as
encoded by decode, analysis, and re-encode module 224, may
be rendered on web browsers of various client computers.
Uninfected client computers 212a-212#n represent computers
that do not have malicious code programmed to interfere with
aparticular site a user visits or to otherwise perform malicious
activity. Infected client computers 214a-214# represent com-
puters that do have malware or malicious code (218a-218x,
respectively) programmed to interfere with a particular site a
user Vvisits or to otherwise perform malicious activity. In cer-
tain implementations, the client computers 212,214 may also
store the encrypted cookies discussed above and pass such
cookies back through the network 210. The client computers
212, 214 will, once they obtain the served content, implement
DOMs for managing the displayed web pages, and instru-
mentation code may monitor the respective DOMs as dis-
cussed above. Reports of illogical activity (e.g., software on
the client device calling a method that does not exist in the
downloaded and rendered content) can then be reported back
to the server system.

The reports from the instrumentation code may be ana-
lyzed and processed in various manners in order to determine
how to respond to particular abnormal events, and to track
down malicious code via analysis of multiple different similar
interactions across different client computers 212, 214. For
small-scale analysis, each web site operator may be provided
with a single security console 207 that provides analytical
tools for a single site or group of sites. For example, the
console 207 may include software for showing groups of
abnormal activities, or reports that indicate the type of code
served by the web site that generates the most abnormal
activity. For example, a security officer for a bank may deter-
mine that defensive actions are needed if most of the reported
abnormal activity for its web site relates to content elements
corresponding to money transfer operations—an indication
that stale malicious code may be trying to access such ele-
ments surreptitiously.

A central security console 208 may connect to a large
number of web content providers, and may be run, for
example, by an organization that provides the software for
operating the security server systems 202a-2027. Such con-
sole 208 may access complex analytical and data analysis
tools, such as tools that identify clustering of abnormal activi-
ties across thousands of client computers and sessions, so that
an operator of the console 208 can focus on those clusters in
order to diagnose them as malicious or benign, and then take
steps to thwart any malicious activity.

In certain other implementations, the console 208 may
have access to software for analyzing telemetry data received
from a very large number of client computers that execute
instrumentation code provided by the system 200. Such data
may result from forms being re-written across a large number

15

30

35

40

45

26

of web pages and web sites to include content that collects
system information such as browser version, installed plug-
ins, screen resolution, window size and position, operating
system, network information, and the like. In addition, user
interaction with served content may be characterized by such
code, such as the speed with which a user interacts with a
page, the path of a pointer over the page, and the like.

Such collected telemetry data, across many thousands of
sessions and client devices, may be used by the console 208 to
identify what is “natural” interaction with a particular page
that is likely the result of legitimate human actions, and what
is “unnatural” interaction that is likely the result of a bot
interacting with the content. Statistical and machine learning
methods may be used to identify patterns in such telemetry
data, and to resolve bot candidates to particular client com-
puters. Such client computers may then be handled in special
manners by the system 200, may be blocked from interaction,
or may have their operators notified that their computer is
potentially running malicious software (e.g., by sending an
e-mail to an account holder of a computer so that the mali-
cious software cannot intercept it easily).

FIG.3A is a flow diagram of a process for serving modified
and instrumented program code. In general, the process
involves intercepting code that would otherwise be served
directly to a client device, and (a) modifying the code both by
making changes that interfere with malicious attempts to
interact with the web server through the client, and (b) supple-
menting the code with instrumentation code that is pro-
grammed to identify certain actions with respect to the served
code, such as efforts to access the served code in a manner that
only makes sense for the unmodified code (but not the modi-
fied code), such as attempts t make calls with names or param-
eters that are in the unmodified code but not the modified
code. The modified and instrumented code can perform
detection and deflection of anomalous and/or malicious com-
puter activity. For example, in internet-based communication
between a client computing device and a web server, the
process can modify and instrument web code such as HTML,
CSS, and JavaScript to detect abnormal activity by malware
that exploits vulnerabilities of the client computing device.

At 302, the process starts, and at 304, a server subsystem
receives web code from a web server in response to a request
from a client computing device. In some implementations, the
server subsystem corresponds to the security intermediary
102 in FIGS. 1A and 1B. The server subsystem may be a
virtual component of computer hardware that implements the
web server, or the server subsystem may be separate from the
web server. In some embodiments, the server subsystem may
be installed on the premises of the web server and communi-
cate over a local area network or direct communication lines.
The server subsystem can also be hosted by a third-party at a
remote location from both the client device and the web
server, such that the server subsystem and the web server
communicate over a public network (e.g., the internet) or a
private network.

In some implementations, the server subsystem can func-
tion as a reverse proxy so that client requests to the web server
are first directed to the server subsystem and then forwarded
to the web server, and content that the web server provides is
forwarded to the server subsystem before being transmitted to
a requesting client device. Web code includes data that is
transmitted between the client computing device and the web
server, such as HT'TP requests and code for generating web
pages such as HTML, XML, JavaScript, and CSS. The tech-
niques described herein can also apply to other forms of web
code including particular content technologies such as Flash/
ActionScript, VBScript, Python, and Java Applets. In some

US 9,178,908 B2

27

implementations, the techniques described here can apply in
the context of other network transfer protocols such as the file
transfer protocol (FTP), HTTP secure (HTTPs), and others.

When the web server receives a request from a client com-
puting device, the web server generates a response and for-
wards the response to the server subsystem. In some
instances, the web server may respond with a resource that is
stored on or accessible to the web server. The web server may
also execute software on the server to generate a resource. The
resource may correspond to a web site hosted by the web
server, such as an HTML file for a particular page. Some
resources may reference other resources, causing the client
computing device to make subsequent requests for the other
resources such as separate JavaScript or CSS files. If the web
server is unable to satisfy the request, it may respond with an
error indicator.

At 306, the server subsystem determines a security policy
that governs the transaction and that indicates whether to
process a resource before transmitting it to the client, and if
s0, how to process the resource. A policy engine in the server
subsystem can generate or identify the appropriate security
policy, which may be based on one or more factors such as the
nature of the resource, system configuration settings, and
characteristics of the requesting client device. For example,
resources may be categorized into families in which a given
security policy applies to each family of resources. Catego-
rization may be performed manually to one or more particular
resources, or may be based on a logical location of the
resource in one example. Thus, resources within a family of
URLs may be subject to a common security policy. Some
resources can bypass any modification or further processing
by the server subsystem, for instance, if they are deemed
low-risk for exploitation.

At 308, if the security policy informs the server subsystem
to forego further processing of the web code for the resource,
then the server subsystem may transmit the resource and its
associated web code to the client device (310). Such trans-
mission may occur as to a portion of resources served for a
transaction or for all resources.

If the server subsystem determines that web code for the
resource should be processed further (308), it may apply
various modifications to the web code to obscure operation of
the web server (312), as viewed from a client computing
device. In some implementations, the server subsystem may
modify all or portions of a resource’s implicit API. An
implicit API can include any elements of the provided
resource that are used by a client computing device in gener-
ating a response to the resource. For web pages, the implicit
API may include links, form data, form fields, and AJAX
calls, among other things. The server subsystem may replace
values associated with the implicit API with other values that
obscure the original values provided from the web server. The
replacement values can be generated by various methods
including methods for generating pseudo-random values. For
example, the server subsystem may modity a link in an html
file from original code that provided <a href= “securepage.
htm!l”> to . The modification may
prevent malware at a client computing device from determin-
ing the actual target of the link. When a user selects the link,
the client computing device generates an HTTP request for
the obscured replacement page rather than “securepage.
html.” Similar modifications may be made to forms, fields,
AJAX calls, and other portions of a resource’s implicit API.

The server subsystem can also make other types of modi-
fications on web code before delivering a resource to a client
computing device. For example, the server subsystem may
add elements, substitute, or delete elements to obscure the

10

15

20

25

30

35

40

45

50

55

60

65

28

arrangement and static structure of a website. Client-execut-
able code may also be added to the web code that can perform
modifications to a resource, such as changing a web page’s
document object model, at the client device automatically or
upon some triggering event. Some malware may attempt to
infer the identity of various components of a webpage by
examining the arrangement of the page, to see how compo-
nents interrelate. By rearranging this structure and introduc-
ing various hooks into the web code, the server subsystem can
make it more difficult for malware at a client device to deter-
mine characteristics and structure of a website and engage in
unauthorized activity with the site. In some implementations,
this may include changing JavaScript functions and variables
such as “document.write,” “document.getElementByld()”
“document.getElementByName()” “document.getElement-
ByTagName()” “document.evaluate()” etc.

The server subsystem can apply modifications that do not
impact a user’s experience in interacting with the resource.
For example, if the user has requested a particular web page,
the web page can be modified so that the modifications to the
web code are generally transparent to the user. Thus, modifi-
cations to the web page generally will not affect the visible
structure of the page, and the page can maintain the same
functionality and other elements of a user’s experience with
the page as the unmodified page would present. For example,
the server subsystem may replace the target in a link in a
modified page, and although the user may notice that the URL
does not appear to be connected to the site that he or she has
visited, the text, location, and functionality of the link are all
maintained. Selecting the link will still direct the user to
intended target of the link, for example.

For some modifications, including those made on the
implicit API of a resource, the modifications may be revers-
ible. Reverse modifications may be necessary to decode a
request based on a modified webpage. For example, if the
server subsystem changed the target of a link from “secure-
page.html” to “Pr&4@k78”, and the user later selects the link
and requests a resource identified by the obscured target
“Pr&4@k78,” it becomes necessary to determine the original
value that was replaced so that the web server can satisfy the
user’s intended request. In some implementations, each
modified resource can be served by the server subsystem with
a cookie added to the HTTP header, or some other identifier
for the resource, that can be sent back to the server system in
a request based on the modified page. The server subsystem
can use the cookie or other identifier to access a table, data-
base, or other data structure corresponding to the identifier
that contains information for decoding the request. For
instance, a translation table in the server subsystem for the
webpage in the foregoing example may show that the original
value for “Pr&4&k78” was “securepage.html,” and this value
can be replaced in the request for the web server.

The server subsystem can apply different modifications to
a resource each time that it is served. Operations of the web
server can be obscured more effectively by changing the
modifications to a resource each time it is served and before
the resource is received by the client device to prevent mal-
ware from learning about the structure of a site. Changing the
modifications each time that the web server provides a
resource can make it more difficult for malware on the client
device to determine a static structure of the site because the
modifications create a moving target. Different modifications
can be made to a common resource requested by multiple
client devices so that each requesting client device is served
with the resource with unique modifications. Even for a single
user at one client device, the server subsystem can apply
different modifications to a requested resource across mul-

US 9,178,908 B2

29

tiple sessions. The server subsystem can apply unique modi-
fications to a resource for each session. For the purposes of
applying different modifications across multiple sessions, the
sessions can correspond to sessions that are set by the web
server, such as a session cookie that is sent from the web
server in association with a resource and that may expire in a
predetermined time and/or when a user closes a browser
window at the client device, for example.

In some implementations, the server subsystem may also
create other sessions for purposes of the server subsystem’s
operations instead of the web server. For example, the server
subsystem may include a cookie that was not included in the
content associated with a resource from the web server, and
that can be set to expire in a predetermined amount of time or
in association with a user’s browsing activity. The session
identifier can also be used by the server subsystem for deter-
mining a translation table to apply for decoding a resource
(i.e., reverse modifications). In some implementations, the
server subsystem may consider a session to have expired
when it receives a request from a client device in response to
apreviously modified resource that the server subsystem sent
to the client.

At 314, the server subsystem may supplement a resource
provided by the web server in response to a request from a
client device with instrumentation code. The instrumentation
code may be executable on the client device and can detect
abnormal computer behavior, which may result from mal-
ware that has infected the client device, software bugs, or even
user-authorized plug-ins for example. Some abnormal behav-
ior may be anomalous but benign, whereas other behavior,
such as that from malware, may be malicious and represent a
security threat to the web server. The instrumentation code
may detect various types of abnormal behavior and report the
detected abnormalities back to the server subsystem and/or
the web server. In some instances, the instrumentation code
may distinguish between benign and malicious activity and
only generate an alert for malicious activity.

Some instrumentation code can use the modifications
made by the server subsystem in detecting abnormal activity.
For example, the server subsystem may replace all the values
ina web page’s implicit API before transmitting the web page
to a client device. The instrumentation code may be config-
ured to recognize if the client device attempts to use one of the
replaced values, or any other value, rather than the replace-
ment value. For instance, in the above example about the
replaced link target, the instrumentation code may detect
abnormal activity if the client generated an HTTP request in
response to the modified page that included a request to
“securepage.html” rather than “Pr&4&k78.”

At 318, the server subsystem provides the modified and
instrumented web code to the requesting client device. The
code may be transmitted over a network such as the internet to
the client computing device. In some instances, secure com-
munication protocols can be used between the client device
the server subsystem to authenticate the communication and
protect against eavesdropping attacks. For example, the
server subsystem may send the web code over an encrypted
connection using HTTPs.

FIG. 3B depicts a flow chart of an example process for
monitoring client devices for abnormal activity. In general,
the process indicates actions that occur when a user interacts
with a web page generated from the code delivery of FIG. 3A,
with information about a user request and additional data
generated by the instrumented code being sent to the server
system. The flow chart in 3B logically continues from the end
320 of the flow chart depicted in FIG. 3A in which the server

25

30

40

45

50

30

subsystem has transmitted modified and instrumented web
code for a requested resource to a client device.

At 322, the process begins, and at 324, the server sub-
system receives an indication that abnormal activity has
occurred on the client device. In some implementations, the
indication may be received from the instrumentation code
that the server subsystem supplemented the web code with at
314. The instrumentation code can execute on the client
device 112 or 114 while the client has executed the modified
and instrumented version of the requested resource. When the
instrumentation code detects abnormal behavior, it may gen-
erate a report and provide the report to the server subsystem.

The report may contain various information about the
detected event such as the time at which it was detected, how
many times the event was detected, and information about the
nature or consequences of the event. For example, the instru-
mentation code may detect that the DOM for a web page has
been altered such that, in combination with the modifications
from the web server, the page does not function properly. The
report may also indicate whether the abnormal behavior is
more likely legitimate or malicious, and may provide a score
that indicates the likelihood that the event stems from opera-
tions of a bot or other malware. To allow for subsequent
analysis of the event, the report may provide other circum-
stantial information such as an identity of the client, the
application or web browser in which the event occurred, a
session identifier, a network identifier, and/or a resource or
website identifier. In some implementations, the report may
include a flag that indicates only that some abnormal or sus-
picious activity has been detected.

At 326, the server subsystem reports to the web server that
it has received an indication of abnormal behavior to the web
server. The web server may use the report from the server
subsystem to modify a manner in which a transaction with the
client device is handled. In some instances, transactions such
as electronic funds transfers at a banking website, or authen-
tication transactions more generally, may relate to sensitive
information or matters in which security is paramount. In
such cases, the web server may be configured to refuse to
execute the transaction as requested. Alternatively, the web
server may log the reported event but still complete the trans-
action. In some cases, the web server may also alter terms of
the transactions, or notify authorized users, account holders,
and/or a fraud or IT security department of the abnormal
behavior, for instance. In some implementations, the web
server may respond as if the transaction completed without
actually completing the transaction.

The server subsystem can also transmit information about
reported abnormal behavior to a central security server. The
central security server may be implemented in some
examples by security server 108 in the system 100 depicted in
FIG. 1B. The central security server can be a separate server
from the web server and the server subsystem and may be
connected to multiple server subsystems associated with a
plurality of web servers and web sites. In some examples, web
server or web site operators may purchase or lease a server
subsystem to operate with their respective web server(s) from
an internet security authority. The central security server can
be maintained by the internet security authority to monitor
operations of the server subsystems and to collect informa-
tion about detected abnormal behaviors.

Because the central security server can receive security
reports from multiple server subsystems, data may be aggre-
gated across multiple web sites, web servers, computing ses-
sions, client devices, networks, and/or users. The internet
security authority that maintains the central security server
can use the reported information about abnormal activity for

US 9,178,908 B2

31

various purposes. For instance, the central server data may
indicate how effectively the instrumentation code detects
abnormal activity on client devices, or how effective web
code modifications by the server subsystem are at obscuring
information about a web site and preventing malicious trans-
actions. The aggregated data may also be used to identify and
classify particular reported behaviors as being associated
with a legitimate or benign behavior such as an authorized
browser plug-in, or if the behavior is more likely a malicious
attack. The data may also be used, for example, to improve the
algorithms and operation of the server subsystems to improve
performance and detection and deflection capabilities.

At 330, the server subsystem receives a request from a
client device in response to previously served modified and
instrumented web code. For example, the client device may
receive an HTTP response that includes modified names for
form fields in an HTML document that was previously served
on the client device. For instance, a user may have submitted
a query in a web page using a text field in which its original
name value of “search_bar” had been modified and replaced
to “$fad&6.” The server subsystem receives the request based
on the modified and instrumented code before the request is
forwarded to the web server. The instrumentation code may
also include information in the request that indicates whether
abnormal activity was detected, and if so, a report about the
abnormal activity.

At 332, the server subsystem decodes the received client
request so that the request can be forwarded to the web server
in a format that the web server understands. The server sub-
system can decode such requests by applying reverse modi-
fications to the request. For example, the server subsystem
may have stored information about modifications for a
resource in a data structure, table, or database that can be
identified based on a unique identifier for each served
resource. The identifier can be included by the server sub-
system in providing the client devices with modified and
instrumented code, such as in a cookie, that the client device
includes in subsequent HTTP requests that respond to the
modified and instrumented code. Using the identifier, the
server subsystem can locate the relevant modification infor-
mation in the data structure, table, or database and generate a
decoded request based on the stored modification informa-
tion.

In some implementations, the server subsystem can imple-
ment stateless modification and decoding techniques such
that the server subsystem does not need to store information
about previous modifications on the server subsystem. For
example, the server subsystem can transmit the information
needed to decode requests based on modified and instru-
mented web code to the client in an encrypted cookie that the
server subsystem can then receive from the client in future
requests from the client device.

At 334, the server subsystem forwards the client request to
the web server. If the server subsystem received no indication
of'abnormal behavior from the client device, the request may
be forwarded in such decoded form without additional modi-
fications such that the operations of the server subsystem
appear generally transparent to the web server. The decoded
request is substantially equivalent to a request that the web
server would receive if the server subsystem was not there. In
some implementations, the server subsystem can include
other information with the request that can indicate to the web
server the status of the transaction or a status of the server
subsystem. For instance, the server subsystem may include
information that affirmatively indicates that the server sub-
system is operating correctly, or information that indicates the
server server subsystem is not operating properly. The server

10

15

20

25

30

35

40

45

50

55

60

65

32

subsystem may include information that indicates whether
abnormal behavior was reported and the nature of any
reported abnormal behavior. Thus, the server subsystem can
receive a decoded request and respond appropriately based on
information that the server subsystem supplemented with the
forwarded request.

FIGS. 4A and 4B are swim-lane diagrams of a process for
serving code, modifying and instrumenting the code, and
monitoring operation of the code on a client device. Opera-
tions in the process occur between a computing client device
114 that has been infected with malicious code 118, a server
subsystem 102, a web server 104, and a central security server
108. The server subsystem 102 may include the features of the
server subsystem described in the process of FIGS. 3A and
3B, and/or the features of the security intermediary 102
described in FIGS. 1A and 1B. The numerical presentation of
items from FIGS. 1A and 1B are provided here by means of
example, while other structural implementations may be used
as appropriate.

At 410, the client device 114 makes a request of the web
server 104 for a resource, such as a web page on a website
hosted by the web server 104. The request may be an HTTP
request, for example, that is transmitted over the internet 110.
The server subsystem 102 may function as a reverse proxy
server such that the server subsystem 102 receives the request
and, at 412, forwards the request to the web server 104. In
some implementations, a load balancer 106 may function as a
reverse proxy server rather than or in addition to the server
subsystem 102, and can forward the request to the web server
104.

Upon receiving the request, the web server generates or
accesses a resource to provide in response to the requesting
client device 114. For example, the resource may be a web
page defined by HTML code that is executable on the client
device 114. At 414, the web server 104 sends the resource to
the server subsystem 102. The server subsystem performs a
preliminary analysis of the resource provided by the web
server 104 and determines, at 416, a security policy that
applies to the resource. The security policy may indicate
whether the server subsystem 102 should modify the web
code for the resource and/or whether to provide the resource
to the client device 114 with instrumentation code that can
detect abnormal activity at the client device 114.

At 418, the server subsystem 102 modifies and instruments
the requested resource’s web code according to the applicable
security policy. The server subsystem 102 may use various
techniques for randomly modifying web code and/or supple-
menting the web code with instrumentation code to detect
and/or deflect abnormal and malicious program code on the
client device 114. This document discusses such techniques
throughout the specification, including with respect to FIG. 2,
for example.

At 420, the server subsystem 102 serves the modified and
instrumented web code to the client device 114. The modified
and instrumented web code may be delivered to the client
device 114 over a secure internet connection to authenticate
one or more endpoints of the transaction and to protect against
eavesdroppers.

The client device 114 receives and executes the modified
and instrumented web code at 422. For web code that defines
a web page, for instance, a web browser at the client device
114 can interpret the code, build a document object model,
request any referenced files such as images, JavaScript, or
CSS files referenced by the web code, and present the web
page to a usetr.

As the user interacts with the executing resource code, at
424 the supplemented instrumentation code may detect any

US 9,178,908 B2

33

abnormal behavior that occurs on the client with respect to the
executing resource code. For example, malicious code 118
that surreptitiously resides on the client device 114 and that
has penetrated a security vulnerability in the client’s 114 web
browser, may attempt to alter the web page’s DOM or gen-
erate an unauthorized HTTP request in a way that is incon-
sistent with the modified web code from the server subsystem
102. The instrumentation code can detect such behavior.

At 426, the client device may submit an HTTP request in
response to the modified and instrumented code, which may
include a report about detected abnormal activity generated
by the instrumentation code. The report may include, for
example, information about the state, identity, or context of
the client device 114 and/or the web browser or other appli-
cation in which the code is executing. The report may include
an IP address, MAC address, or other network or device
identifiers, and a session identifier. Information about the
nature of the detected event may also be included such as how
the abnormal activity (e.g., malicious code 118) attempted to
interact with the modified resource executing on the client
device 114.

The client device may transmit the HT'TP request at 426 in
response to a user’s direction as indicated by interaction with
the executing web page. For example, a link that the user
follows from a web page or a request to post form data can
prompt the HTTP request. The HTTP request may include
information that allows the server subsystem to decode the
request such as an encrypted transformation table or a session
identifier to correspond to an identifier stored on the server
subsystem 102.

At 428, the server subsystem 102 decodes the HTTP
request from the client device 114. For instance, function
values that were replaced during the modification process in
serving the code may be restored to their original values as
provided from the web server 104. Other techniques for
decoding are discussed throughout this specification. The
server subsystem 102 can maintain or log information about
the reported occurrence of abnormal activity during the
decoding process.

Based on the report from the instrumentation code, at 434,
the server subsystem 102 may send an indication to the web
server 104 that abnormal activity was detected on the client
device 114 and that a user may not have legitimately autho-
rized the HTTP request. In some implementations, the server
subsystem 102 may be configured to not deliver a request to
the web server 104 when the subsystem 102 has received an
indication of detected abnormal client activity.

At 436, the web server 104 determines a response to the
decoded request. The web server 104 may adjust its response
based on an indication that abnormal or malicious activity
occurred on the client device 114, which may indicate an
attempt to engage in a fraudulent transaction with the web
server 104, or to otherwise exploit the web server 104. For
example, the web server 104 may respond by completing the
transaction as requested, providing an error message, and/or
refusing to complete the transaction. The web server 104 may
also act as if the transaction completed when in fact it did not.

At 435, the server subsystem 102 may send information
about the received report of detected abnormal activity to the
central security server 108 immediately upon receipt of the
report, or it may periodically send information about a plu-
rality of reports that the server subsystem has received over a
period of time. Alternatively, or in addition to such reporting,
the central security server 108 may request that the server
subsystem 102 provide information about detected abnormal
activity, and the server subsystem may respond accordingly.

40

45

34

At 438, the central security server 108 analyzes informa-
tion about abnormal client activity that it has received from
the server subsystem 102, as well as from other similar sys-
tems that may serve other web domains. The central security
server 108 may analyze multiple security reports generated
by instrumentation code that executed on multiple client
devices, for multiple users, and across multiple computing
sessions, for example. For instance, central server 108 may
use clustering techniques and statistical tools to abstract
information about security threats, which information can be
used to improve the capabilities of the server subsystem 102
to detect and obstruct future threats.

FIG. 5 is a schematic diagram of a computer system 500.
The system 500 can be used for the operations described in
association with any of the computer-implemented methods
described previously, according to one implementation. The
system 500 is intended to include various forms of digital
computers, such as laptops, desktops, workstations, personal
digital assistants, servers, blade servers, mainframes, and
other appropriate computers. The system 500 can also include
mobile devices, such as personal digital assistants, cellular
telephones, smartphones, and other similar computing
devices. Additionally the system can include portable storage
media, such as, Universal Serial Bus (USB) flash drives. For
example, the USB flash drives may store operating systems
and other applications. The USB flash drives can include
input/output components, such as a wireless transmitter or
USB connector that may be inserted into a USB port of
another computing device.

The system 500 includes a processor 510, a memory 520, a
storage device 530, and an input/output device 540. Each of
the components 510, 520, 530, and 540 are interconnected
using a system bus 550. The processor 510 is capable of
processing instructions for execution within the system 500.
The processor may be designed using any of a number of
architectures. For example, the processor 510 may be a CISC
(Complex Instruction Set Computers) processor, a RISC (Re-
duced Instruction Set Computer) processor, or a MISC (Mini-
mal Instruction Set Computer) processor.

In one implementation, the processor 510 is a single-
threaded processor. In another implementation, the processor
510 is a multi-threaded processor. The processor 510 is
capable of processing instructions stored in the memory 520
or on the storage device 530 to display graphical information
for a user interface on the input/output device 540.

The memory 520 stores information within the system 500.
In one implementation, the memory 520 is a computer-read-
able medium. In one implementation, the memory 520 is a
volatile memory unit. In another implementation, the
memory 520 is a non-volatile memory unit.

The input/output device 540 provides input/output opera-
tions for the system 500. In one implementation, the input/
output device 540 includes a keyboard and/or pointing
device. In another implementation, the input/output device
540 includes a display unit for displaying graphical user
interfaces.

The input/output device 540 provides input/output opera-
tions for the system 500. In one implementation, the input/
output device 540 includes a keyboard and/or pointing
device. In another implementation, the input/output device
640 includes a display unit for displaying graphical user
interfaces.

The features described can be implemented in digital elec-
tronic circuitry, or in computer hardware, firmware, software,
or in combinations of them. The apparatus can be imple-
mented in a computer program product tangibly embodied in
an information carrier, e.g., in a machine-readable storage

US 9,178,908 B2

35

device for execution by a programmable processor; and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple-
mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions to,
a data storage system, at least one input device, and at least
one output device. A computer program is a set of instructions
that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A
computer program can be written in any form of program-
ming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer are a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor for displaying information to the user and a keyboard and
apointing device such as a mouse or a trackball by which the
user can provide input to the computer. Additionally, such
activities can be implemented via touchscreen flat-panel dis-
plays and other appropriate mechanisms.

The features can be implemented in a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include a local area network (“LAN”), a wide area network
(“WAN?”), peer-to-peer networks (having ad-hoc or static
members), grid computing infrastructures, and the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

20

25

30

40

45

55

36

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular imple-
mentations of particular inventions. Certain features that are
described in this specification in the context of separate
implementations can also be implemented in combination in
a single implementation. Conversely, various features that are
described in the context of a single implementation can also
be implemented in multiple implementations separately or in
any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations and
even initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed to
a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the implementations described above should not be
understood as requiring such separation in all implementa-
tions, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

Thus, particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order and
still achieve desirable results. In addition, the processes
depicted in the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, multi-
tasking and parallel processing may be advantageous. In
some implementations, the subject matter may be embodied
as methods, systems, devices, and/or as an article or computer
program product. The article or computer program product
may comprise one or more computer-readable media or com-
puter-readable storage devices, which may be tangible and
non-transitory, that include instructions that may be execut-
able by one or more machines such as computer processors.

What is claimed is:

1. A computer-implemented security method comprising:

receiving, at a computer server subsystem and from a web
server system, computer code that is requested to be
served over the internet to multiple different computing
clients;

modifying the computer code in different manners for par-
ticular ones of the multiple different computing clients,
so as to obscure operational design of the web server
system that could be determined from the computer
code;

serving a first instance of the modified computer code to a
first computing client among the multiple different com-
puting clients;

receiving an indication that the first computing client
attempted to interact with an unmodified form of the
computer code while executing the first instance of the
modified computer code; and

in response to receiving the indication that the first com-
puting client attempted to interact with the unmodified

US 9,178,908 B2

37

form of the computer code, generating an indication that
an abnormal event has occurred at the first computing
client.
2. The computer-implemented method of claim 1, further
comprising:
identifying that a second computing client among the mul-
tiple different computing clients has made receiving
multiple requests for the computer code; and

modifying the computer code in different manners for par-
ticular ones of the multiple requests from the second
computing client, so as to obscure operational design of
the web server system that could be determined from the
code.

3. The computer-implemented method of claim 1, further
comprising supplementing the computer code or the first
instance of the modified computer code, that is to be served to
the first computing client, with instrumentation code that is
programmed to execute on the first computing client to moni-
tor and report information about detected interactions with
the first instance of the modified computer code executing on
the first computing client.

4. The computer-implemented method of claim 3, wherein
the instrumentation code is further programmed to monitor
the first instance of the modified computer code, when the
first instance of the modified computer code is executed on
the first computing client, for indications of attempted inter-
actions with the unmodified form of the computer code, and
to cause transmission of reports of the attempted interactions
with the unmodified form of the computer code.

5. The computer-implemented method of claim 1, wherein
generating the indication that the abnormal event has
occurred at the first computing client comprises notifying a
portion of the web server system of the occurrence of the
abnormal event, wherein the notification is usable by the web
server system to modify a manner in which a transaction with
the first computing client is performed.

6. The computer-implemented method of claim 5, wherein
generating the indication that the abnormal event has
occurred at the first computing client comprises providing, to
a central security monitoring system separate from the com-
puter server subsystem, information that characterizes the
abnormal event that occurred at the first computing client, the
information usable by the central security monitoring system
in aggregation with corresponding information from other
computing clients, other computing sessions, or both, to iden-
tify common abnormal events indicative of coordinated mali-
cious computing behavior.

7. The computer-implemented method of claim 1, further
comprising:

receiving, from the first computing client, a request that

responds to the first instance of the modified computer
code;

modifying the request that responds to the first instance of

the modified computer code in a manner that is a func-
tional inverse of the first instance of the modifying of the
computer code; and

providing the modified request to the web server system.

8. The computer-implemented method of claim 1, wherein
modifying the computer code to generate the first instance of
the modified computer code that obscures operational design
of'the web server system comprises changing names of func-
tions in the computer code.

9. The computer-implemented method of claim 1, wherein
modifying the computer code to generate the first instance of
the modified computer code that obscures operational design
of the web server system comprises changing the values of
attributes in the computer code.

20

25

40

45

50

60

65

38

10. The computer-implemented method of claim 1,
wherein modifying the computer code to generate the first
instance of the modified computer code that obscures opera-
tional design of the web server system comprises changing
values associated with at least one of a link, a form, a field, and
a function in an HTML document.

11. The computer-implemented method of claim 1,
wherein modifying the computer code to generate the first
instance of the modified computer code that obscures opera-
tional design of the web server system comprises at least one
of'adding, removing, and rearranging content in a web docu-
ment.

12. The computer-implemented method of claim 1,
wherein modifying the computer code to generate the first
instance of the modified computer code that obscures opera-
tional design of the web server system includes changing an
environment in which executable code on the first computing
client operates.

13. The computer-implemented method of claim 1, further
comprising:

identifying a security policy that is assigned to the first

computing client and that indicates a particular manner
in which computer code is to be modified for the first
computing client, wherein the identified security policy
is selected from among a plurality of security policies
that are assigned to different ones of the multiple differ-
ent computing clients;

wherein modifying the computer code to generate the first

instance of the modified computer code that obscures
operational design of the web server system comprises
re-coding the computer code based on one or more
parameters indicated by the security policy that specity
a manner in which the computer code is to be modified
for the first computing client.

14. The computer-implemented method of claim 7,

wherein:

serving the first instance of the modified computer code to

the computing client includes associating the first
instance of the modified computer code with a session
identifier, and

the received request from the first computing client that

responds to the first instance of the modified computer
code includes the session identifier.

15. The computer-implemented method of claim 14, fur-
ther comprising:

storing information about the modifications to the com-

puter code, that were made to generate the first instance
of the modified computer code, in a data structure that is
identifiable by the session identifier,

wherein modifying the request in the manner that is the

functional inverse of the first instance of the modifying
of the computer code includes identifying, in the data
structure and using the session identifier included in the
request from the first computing client, the stored infor-
mation about the modifications to the computer code,
and using the stored information about the modifications
to the computer code to modify the request in the manner
that is the functional inverse of the first instance of the
modifying of the computer code.

16. The computer-implemented method of claim 1,
wherein the first instance of the modified computer code is
configured to provide a user of the first computing client with
a substantially equivalent experience as the user would be
provided from unmodified computer code.

17. A computer system comprising:

a first interface configured to manage communications

with client computing devices over a network;

US 9,178,908 B2

39

a second interface configured to manage communications
with a web server, the web server configured to serve
resources in the form of computer code to the client
computing devices in response to receiving requests for
the resources from the client computing devices;

a security intermediary configured to (i) receive the
resources from the web server before the resources are
provided to the client computing devices, (ii) process the
received resources, and (iii) transmit the processed
resources to the client computing devices, wherein pro-
cessing the received resources includes:

(a) modifying the computer code for the received resources
in different manners for different ones of the client com-
puting devices to which the processed resources areto be
transmitted, wherein each instance of the modified com-
puter code is modified so as to obscure operation of the
web server system, and

(b) supplementing the computer code for the received
resources with instrumentation code that is programmed
to execute on the client computing devices to monitor
and report information about detected interactions with
respective instances of the modified and supplemented
computer code executing on the client computing
devices; and

a security server configured to analyze reports generated
by the instrumentation code at the client computing
devices to identify occurrences of abnormal events at the
client computing devices based on indications in the
reports of attempted interactions with versions of the
computer code for the resources other than the respec-
tive versions of modified and supplemented computer
code that were transmitted to corresponding ones of the
client computing devices.

18. The computer system of claim 17, wherein modifying
the computer code for the received resources comprises
changing names of functions in the computer code.

19. The computer system of claim 17, wherein the security
intermediary is further configured to modify the computer
code for a particular resource differently for each of a plural-
ity of requests from a particular one of the client computing
devices, wherein each of the plurality of requests corresponds
to a separate computing session.

20. The computer system of claim 17, wherein the security
intermediary is configured to process the received resources
by re-coding the resources in such a manner that the re-coded
resources, when executed by the client computing devices,
cause the client computing devices to present user experi-
ences that are substantially equivalent to the user experiences
that would result from executing the resources if the resources
were not processed by the security intermediary.

21. The computer system of claim 17, wherein the instru-
mentation code that is programmed to execute on the client
computing devices is further programmed to detect alien
content interaction with the document object models (DOMs)
at the computing client.

22. The computer-implemented method of claim 4,
wherein the indication that the first computing client
attempted to interact with the unmodified form of the com-
puter code is received as a report that was generated by the
instrumentation code.

23. The computer-implemented method of claim 22,
wherein the report comprises a flag indicating that abnormal
behavior has been detected.

24. The computer-implemented method of claim 22,
wherein the report comprises an indication of at least one of a
time of the detected abnormal behavior, a session identifier, a
web browser or other application identifier, a network iden-

10

15

20

25

30

35

40

45

50

55

60

65

40

tifier, a resource or website identifier, and one or more char-
acteristics about the detected abnormal behavior.

25. One or more non-transitory computer-readable devices
including instructions stored thereon that, when executed by
one or more processors, cause performance of operations
comprising:

receiving, at a computer server subsystem and from a web

server system, computer code that is requested to be
served over the internet to multiple different computing
clients;

modifying the computer code in different manners for par-

ticular ones of the multiple different computing clients,
so as to obscure operational design of the web server
system that could be determined from the computer
code;

serving a first instance of the modified computer code to a

first computing client among the multiple different com-
puting clients;

receiving an indication that the first computing client

attempted to interact with an unmodified form of the
computer code while executing the first instance of the
modified computer code; and

in response to receiving the indication that the first com-

puting client attempted to interact with the unmodified
form of the computer code, generating an indication that
an abnormal event has occurred at the first computing
client.

26. The one or more non-transitory computer-readable
media of claim 25, wherein the operations further comprise:

identifying that a second computing client among the mul-

tiple different computing clients has made multiple
requests for the computer code; and

modifying the computer code in a-different manners for

particular ones of the multiple requests from the second
computing client, so as to obscure operational design of
the web server system that could be determined from the
code.

27. The one or more non-transitory computer-readable
media of claim 25, wherein the operations further comprise
supplementing the computer code or the first instance of the
modified computer code, that is to be served to the first
computing client, with instrumentation code that is pro-
grammed to execute on the first computing client to monitor
and report information about detected interactions with the
first instance of the modified computer code executing on the
first computing client.

28. The one or more non-transitory computer-readable
media of claim 27, wherein the instrumentation code is fur-
ther programmed to monitor the first instance of the modified
computer code, when the first instance of the modified com-
puter code is executed on the first computing client, for indi-
cations of attempted interactions with the unmodified form of
the computer code, and to cause transmission of reports of the
attempted interactions with the unmodified form of the com-
puter code.

29. The one or more non-transitory computer-readable
media of claim 28, wherein the indication that the first com-
puting client attempted to interact with the unmodified form
of'the computer code is received as a report that was generated
by the instrumentation code.

30. The one or more non-transitory computer-readable
media of claim 29, wherein the report comprises a flag indi-
cating that abnormal behavior has been detected.

31. The one or more non-transitory computer-readable
media of'claim 29, wherein the report comprises an indication
of at least one of’ a time of the detected abnormal behavior, a
session identifier, a web browser or other application identi-

US 9,178,908 B2
41

fier, a network identifier, a resource or website identifier, and
one or more characteristics about the detected abnormal
behavior.

32. The one or more non-transitory computer-readable
media of claim 25, wherein generating the indication that the 5
abnormal event has occurred at the first computing client
comprises notifying the web server system of the occurrence
of the abnormal event, wherein the web server system is
programmed to use the notification to modify a manner in
which a transaction with the first computing client is per- 10
formed.

42

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,178,908 B2 Page 1 of 1
APPLICATION NO. : 14/055583

DATED : November 3, 2015

INVENTORC(S) : Justin D. Call et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

Column 37, Line 7(Claim 2), after “made” delete “receiving”.

Column 40, Line 29(Claim 26), delete “media™ and insert -- devices --, therefor.
Column 40, Line 33(Claim 26), delete “a-different” and insert -- different --, therefor.
Column 40, Line 39(Claim 27), delete “media™ and insert -- devices --, therefor.
Column 40, Line 48(Claim 28), delete “media™ and insert -- devices --, therefor.
Column 40, Line 57(Claim 29), delete “media” and insert -- devices --, therefor.
Column 40, Line 65(Claim 31), delete “media” and insert -- devices --, therefor.

Column 41, Line 5(Claim 32), delete “media™ and insert -- devices --, therefor.

Signed and Sealed this
Fifteenth Day of March, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

